語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Intelligent Recognition of Texture a...
~
Wang, Xin.
FindBook
Google Book
Amazon
博客來
Intelligent Recognition of Texture and Material Properties of Fabrics.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Intelligent Recognition of Texture and Material Properties of Fabrics./
作者:
Wang, Xin.
面頁冊數:
143 p.
附註:
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Contained By:
Dissertation Abstracts International74-09B(E).
標題:
Engineering, Materials Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=NR98111
ISBN:
9780494981115
Intelligent Recognition of Texture and Material Properties of Fabrics.
Wang, Xin.
Intelligent Recognition of Texture and Material Properties of Fabrics.
- 143 p.
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Thesis (Ph.D.)--University of Ottawa (Canada), 2011.
Fabrics are unique materials which consist of various properties affecting their performance and end-uses. A computerized fabric property evaluation and analysis method plays a crucial role not only in textile industry but also in scientific research. An accurate analysis and measurement of fabric property provides a powerful tool for gauging product quality, assuring regulatory compliance and assessing the performance of textile materials.
ISBN: 9780494981115Subjects--Topical Terms:
1017759
Engineering, Materials Science.
Intelligent Recognition of Texture and Material Properties of Fabrics.
LDR
:04266nam a2200301 4500
001
1968612
005
20141203122311.5
008
150210s2011 ||||||||||||||||| ||eng d
020
$a
9780494981115
035
$a
(MiAaPQ)AAINR98111
035
$a
AAINR98111
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Wang, Xin.
$3
1245072
245
1 0
$a
Intelligent Recognition of Texture and Material Properties of Fabrics.
300
$a
143 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
502
$a
Thesis (Ph.D.)--University of Ottawa (Canada), 2011.
520
$a
Fabrics are unique materials which consist of various properties affecting their performance and end-uses. A computerized fabric property evaluation and analysis method plays a crucial role not only in textile industry but also in scientific research. An accurate analysis and measurement of fabric property provides a powerful tool for gauging product quality, assuring regulatory compliance and assessing the performance of textile materials.
520
$a
This thesis investigated the solutions for applying computerized methods to evaluate and intelligently interpret the texture and material properties of fabric in an inexpensive and efficient way. Firstly, a method which allows automatic recognition of basic weave pattern and precisely measuring the yarn count is proposed. The yarn crossed-areas are segmented by a spatial domain integral projection approach. Combining fuzzy c-means (FCM) and principal component analysis (PCA) on grey level co-occurrence matrix (GLCM) feature vectors extracted from the segments enables to classify detected segments into two clusters. Based on the analysis on texture orientation features, the yarn crossed-area states are automatically determined. An autocorrelation method is used to find weave repeats and correct detection errors. The method was validated by using computer simulated woven samples and real woven fabric images. The test samples have various yarn counts, appearance, and weave types. All weave patterns of tested fabric samples are successfully recognized and computed yarn counts are consistent to the manual counts.
520
$a
Secondly, we present a methodology for using the high resolution 3D surface data of fabric samples to measure surface roughness in a nondestructive and accurate way. A parameter FDFFT, which is the fractal dimension estimation from 2DFFT of 3D surface scan, is proposed as the indicator of surface roughness. The robustness ofFDFFT, which consists of the rotation-invariance and scale-invariance, is validated on a number of computer simulated fractal Brownian images. Secondly, in order to evaluate the usefulness ofFDFFT, a novel method of calculating standard roughness parameters from 3D surface scan is introduced. According to the test results,FDFFT has been demonstrated as a fast and reliable parameter for measuring the fabric roughness from 3D surface data. We attempt a neural network model using back propagation algorithm andFDFFT for predicting the standard roughness parameters. The proposed neural network model shows good performance experimentally.
520
$a
Finally, an intelligent approach for the interpretation of fabric objective measurements is proposed using supported vector machine (SVM) techniques. The human expert assessments of fabric samples are used during the training phase in order to adjust the general system into an applicable model. Since the target output of the system is clear, the uncertainty which lies in current subjective fabric evaluation does not affect the performance of proposed model. The support vector machine is one of the best solutions for handling high dimensional data classification. The complexity problem of the fabric property has been optimally dealt with. The generalization ability shown in SVM allows the user to separately implement and design the components. Sufficient cross-validations are performed and demonstrate the performance test of the system.
590
$a
School code: 0918.
650
4
$a
Engineering, Materials Science.
$3
1017759
650
4
$a
Computer Science.
$3
626642
690
$a
0794
690
$a
0984
710
2
$a
University of Ottawa (Canada).
$b
Electrical Engineering.
$3
2105791
773
0
$t
Dissertation Abstracts International
$g
74-09B(E).
790
$a
0918
791
$a
Ph.D.
792
$a
2011
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=NR98111
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9263619
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入