語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bootstrap prediction intervals for t...
~
Pan, Li.
FindBook
Google Book
Amazon
博客來
Bootstrap prediction intervals for time series.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Bootstrap prediction intervals for time series./
作者:
Pan, Li.
面頁冊數:
153 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-03(E), Section: B.
Contained By:
Dissertation Abstracts International75-03B(E).
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3602962
ISBN:
9781303566622
Bootstrap prediction intervals for time series.
Pan, Li.
Bootstrap prediction intervals for time series.
- 153 p.
Source: Dissertation Abstracts International, Volume: 75-03(E), Section: B.
Thesis (Ph.D.)--University of California, San Diego, 2013.
We construct bootstrap prediction intervals for linear autoregressions, nonlinear autoregressions, nonparametric autoregressions and Markov processes. Several forward and backward bootstrap methods using predictive residuals and fitted residuals are introduced and applied to those time series. We describe exact algorithms for these different models and show that the bootstrap intervals properly estimate the distribution of the future values. In simulations using standard time series models, we compare the prediction intervals of different methods with regards to coverage level and length of interval.
ISBN: 9781303566622Subjects--Topical Terms:
517247
Statistics.
Bootstrap prediction intervals for time series.
LDR
:01443nam a2200265 4500
001
1968319
005
20141203120940.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303566622
035
$a
(MiAaPQ)AAI3602962
035
$a
AAI3602962
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Pan, Li.
$3
1294820
245
1 0
$a
Bootstrap prediction intervals for time series.
300
$a
153 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-03(E), Section: B.
500
$a
Adviser: Dimitris Politis.
502
$a
Thesis (Ph.D.)--University of California, San Diego, 2013.
520
$a
We construct bootstrap prediction intervals for linear autoregressions, nonlinear autoregressions, nonparametric autoregressions and Markov processes. Several forward and backward bootstrap methods using predictive residuals and fitted residuals are introduced and applied to those time series. We describe exact algorithms for these different models and show that the bootstrap intervals properly estimate the distribution of the future values. In simulations using standard time series models, we compare the prediction intervals of different methods with regards to coverage level and length of interval.
590
$a
School code: 0033.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
University of California, San Diego.
$b
Mathematics.
$3
1022364
773
0
$t
Dissertation Abstracts International
$g
75-03B(E).
790
$a
0033
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3602962
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9263325
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入