語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
On a triply-graded generalization of...
~
Putyra, Krzysztof K.
FindBook
Google Book
Amazon
博客來
On a triply-graded generalization of Khovanov homology.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
On a triply-graded generalization of Khovanov homology./
作者:
Putyra, Krzysztof K.
面頁冊數:
122 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-08(E), Section: B.
Contained By:
Dissertation Abstracts International75-08B(E).
標題:
Theoretical Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3620413
ISBN:
9781303908583
On a triply-graded generalization of Khovanov homology.
Putyra, Krzysztof K.
On a triply-graded generalization of Khovanov homology.
- 122 p.
Source: Dissertation Abstracts International, Volume: 75-08(E), Section: B.
Thesis (Ph.D.)--Columbia University, 2014.
In this thesis we study a certain generalization of Khovanov homology that unifies both the original theory due to M. Khovanov, referred to as the even Khovanov homology, and the odd Khovanov homology introduced by P. Ozsvath, Z. Szabo, and J. Rasmussen.
ISBN: 9781303908583Subjects--Topical Terms:
1672766
Theoretical Mathematics.
On a triply-graded generalization of Khovanov homology.
LDR
:02524nam a2200301 4500
001
1967918
005
20141121132945.5
008
150210s2014 ||||||||||||||||| ||eng d
020
$a
9781303908583
035
$a
(MiAaPQ)AAI3620413
035
$a
AAI3620413
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Putyra, Krzysztof K.
$3
2105009
245
1 0
$a
On a triply-graded generalization of Khovanov homology.
300
$a
122 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-08(E), Section: B.
500
$a
Adviser: Mikhail Khovanov.
502
$a
Thesis (Ph.D.)--Columbia University, 2014.
520
$a
In this thesis we study a certain generalization of Khovanov homology that unifies both the original theory due to M. Khovanov, referred to as the even Khovanov homology, and the odd Khovanov homology introduced by P. Ozsvath, Z. Szabo, and J. Rasmussen.
520
$a
The generalized Khovanov complex is a variant of the formal Khovanov bracket introduced by Bar Natan, constructed in a certain 2-categorical extension of cobordisms, in which the disjoint union is a cubical 2-functor, but not a strict one. This allows us to twist the usual relations between cobordisms with signs or, more generally, other invertible scalars. We prove the homotopy type of the complex is a link invariant, and we show how both even and odd Khovanov homology can be recovered. Then we analyze other link homology theories arising from this construction such as a unified theory over the ring Z pi := Z [pi]/(pi2 - 1), and a variant of the algebra of dotted cobordisms, defined over k := Z [X,Y,Z+/-1]/(X 2 = Y2 = 1).
520
$a
The generalized chain complex is bigraded, but the new grading does not make it a stronger invariant. However, it controls up to some extend signs in the complex, the property we use to prove several properties of the generalized Khovanov complex such as multiplicativity with respect to disjoint unions and connected sums of links, and the duality between complexes for a link and its mirror image. In particular, it follows the odd Khovanov homology of anticheiral links is self-dual. Finally, we explore Bockstein-type homological operations, proving the unified theory is a finer invariant than the even and odd Khovanov homology taken together.
590
$a
School code: 0054.
650
4
$a
Theoretical Mathematics.
$3
1672766
650
4
$a
Mathematics.
$3
515831
690
$a
0642
690
$a
0405
710
2
$a
Columbia University.
$b
Mathematics.
$3
1684292
773
0
$t
Dissertation Abstracts International
$g
75-08B(E).
790
$a
0054
791
$a
Ph.D.
792
$a
2014
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3620413
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9262924
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入