語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Variation models for simultaneous im...
~
Posirca, Iulia Magdalena.
FindBook
Google Book
Amazon
博客來
Variation models for simultaneous image segmentation and noise removal.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Variation models for simultaneous image segmentation and noise removal./
作者:
Posirca, Iulia Magdalena.
面頁冊數:
55 p.
附註:
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Contained By:
Dissertation Abstracts International74-09B(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3569593
ISBN:
9781303069819
Variation models for simultaneous image segmentation and noise removal.
Posirca, Iulia Magdalena.
Variation models for simultaneous image segmentation and noise removal.
- 55 p.
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Thesis (Ph.D.)--University of Florida, 2012.
We present two projects for simultaneous image segmentation and noise removal. The first project concerns the images corrupted with Gaussian noise and the second one was developed for images contaminated with multiplicative noise. For both models we use soft segmentation, which allows each pixel to belong to each image pattern with some probability.
ISBN: 9781303069819Subjects--Topical Terms:
515831
Mathematics.
Variation models for simultaneous image segmentation and noise removal.
LDR
:01795nam a2200289 4500
001
1967753
005
20141124124231.5
008
150210s2012 ||||||||||||||||| ||eng d
020
$a
9781303069819
035
$a
(MiAaPQ)AAI3569593
035
$a
AAI3569593
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Posirca, Iulia Magdalena.
$3
2104821
245
1 0
$a
Variation models for simultaneous image segmentation and noise removal.
300
$a
55 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
500
$a
Adviser: Yunmei Chen.
502
$a
Thesis (Ph.D.)--University of Florida, 2012.
520
$a
We present two projects for simultaneous image segmentation and noise removal. The first project concerns the images corrupted with Gaussian noise and the second one was developed for images contaminated with multiplicative noise. For both models we use soft segmentation, which allows each pixel to belong to each image pattern with some probability.
520
$a
Our work proposes also a functional with variable exponent, which provides a better noise removal with feature preserving. The diffusion resulting from the proposed models is a combination between the total variation (TV)-based and isotropic smoothing. To minimize the functional energy, we use the Euler-Lagrange equations on the (K-1)-simplex and the alternating minimization (AM) algorithm. The experimental and comparison results with some traditional models show the efficiency of our work, with improved denoising and segmentation of real and synthetic images.
590
$a
School code: 0070.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Applied Mathematics.
$3
1669109
690
$a
0405
690
$a
0364
710
2
$a
University of Florida.
$3
718949
773
0
$t
Dissertation Abstracts International
$g
74-09B(E).
790
$a
0070
791
$a
Ph.D.
792
$a
2012
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3569593
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9262759
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入