語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Development of an integrated process...
~
Chen, Yixing.
FindBook
Google Book
Amazon
博客來
Development of an integrated process, modeling and simulation platform for performance-based design of low-energy and high IEQ buildings.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Development of an integrated process, modeling and simulation platform for performance-based design of low-energy and high IEQ buildings./
作者:
Chen, Yixing.
面頁冊數:
267 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-05(E), Section: B.
Contained By:
Dissertation Abstracts International75-05B(E).
標題:
Engineering, Mechanical. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3607818
ISBN:
9781303655418
Development of an integrated process, modeling and simulation platform for performance-based design of low-energy and high IEQ buildings.
Chen, Yixing.
Development of an integrated process, modeling and simulation platform for performance-based design of low-energy and high IEQ buildings.
- 267 p.
Source: Dissertation Abstracts International, Volume: 75-05(E), Section: B.
Thesis (Ph.D.)--Syracuse University, 2013.
The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Based on the review and analysis of existing professional practices in building system design, particularly those used in U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It included Assess, Define, Design, Apply, and Monitoring (ADDAM) stages. The current VDS focused on the first three stages. The VDS considers the building design as a multi-dimensional process involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of "who", "what" and "when". It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to the energy efficiency and IEQ performance with particular focus on thermal, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predict the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium size five story office building that received the LEED Platinum Certification from USGBC.
ISBN: 9781303655418Subjects--Topical Terms:
783786
Engineering, Mechanical.
Development of an integrated process, modeling and simulation platform for performance-based design of low-energy and high IEQ buildings.
LDR
:04958nam a2200289 4500
001
1967153
005
20141112080136.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303655418
035
$a
(MiAaPQ)AAI3607818
035
$a
AAI3607818
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chen, Yixing.
$3
2104095
245
1 0
$a
Development of an integrated process, modeling and simulation platform for performance-based design of low-energy and high IEQ buildings.
300
$a
267 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-05(E), Section: B.
500
$a
Adviser: Jianshun Zhang.
502
$a
Thesis (Ph.D.)--Syracuse University, 2013.
520
$a
The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Based on the review and analysis of existing professional practices in building system design, particularly those used in U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It included Assess, Define, Design, Apply, and Monitoring (ADDAM) stages. The current VDS focused on the first three stages. The VDS considers the building design as a multi-dimensional process involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of "who", "what" and "when". It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to the energy efficiency and IEQ performance with particular focus on thermal, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predict the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium size five story office building that received the LEED Platinum Certification from USGBC.
590
$a
School code: 0659.
650
4
$a
Engineering, Mechanical.
$3
783786
650
4
$a
Information Technology.
$3
1030799
650
4
$a
Architecture.
$3
523581
690
$a
0548
690
$a
0489
690
$a
0729
710
2
$a
Syracuse University.
$b
Mechanical and Aerospace Engineering.
$3
2104096
773
0
$t
Dissertation Abstracts International
$g
75-05B(E).
790
$a
0659
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3607818
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9262159
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入