語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational Methods for Comparativ...
~
Frelinger, Jacob.
FindBook
Google Book
Amazon
博客來
Computational Methods for Comparative Analysis of Rare Cell Subsets in Flow Cytometry.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Computational Methods for Comparative Analysis of Rare Cell Subsets in Flow Cytometry./
作者:
Frelinger, Jacob.
面頁冊數:
100 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
Contained By:
Dissertation Abstracts International75-02B(E).
標題:
Biology, Bioinformatics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3601327
ISBN:
9781303522369
Computational Methods for Comparative Analysis of Rare Cell Subsets in Flow Cytometry.
Frelinger, Jacob.
Computational Methods for Comparative Analysis of Rare Cell Subsets in Flow Cytometry.
- 100 p.
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
Thesis (Ph.D.)--Duke University, 2013.
Automated analysis techniques for flow cytometry data can address many of the limitations of manual analysis by providing an objective approach for the identification of cellular subsets. While automated analysis has the potential to significantly improve automated analysis, challenges remain for automated methods in cross sample analysis for large scale studies. This thesis presents new methods for data normalization, sample enrichment for rare events of interest, and cell subset relabeling. These methods build upon and extend the use of Gaussian mixture models in automated flow cytometry analysis to enable practical large scale cell subset identification.
ISBN: 9781303522369Subjects--Topical Terms:
1018415
Biology, Bioinformatics.
Computational Methods for Comparative Analysis of Rare Cell Subsets in Flow Cytometry.
LDR
:01558nam a2200289 4500
001
1965124
005
20141010093005.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303522369
035
$a
(MiAaPQ)AAI3601327
035
$a
AAI3601327
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Frelinger, Jacob.
$3
2101738
245
1 0
$a
Computational Methods for Comparative Analysis of Rare Cell Subsets in Flow Cytometry.
300
$a
100 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
500
$a
Adviser: Cliburn Chan.
502
$a
Thesis (Ph.D.)--Duke University, 2013.
520
$a
Automated analysis techniques for flow cytometry data can address many of the limitations of manual analysis by providing an objective approach for the identification of cellular subsets. While automated analysis has the potential to significantly improve automated analysis, challenges remain for automated methods in cross sample analysis for large scale studies. This thesis presents new methods for data normalization, sample enrichment for rare events of interest, and cell subset relabeling. These methods build upon and extend the use of Gaussian mixture models in automated flow cytometry analysis to enable practical large scale cell subset identification.
590
$a
School code: 0066.
650
4
$a
Biology, Bioinformatics.
$3
1018415
650
4
$a
Health Sciences, Immunology.
$3
1017716
650
4
$a
Computer Science.
$3
626642
690
$a
0715
690
$a
0982
690
$a
0984
710
2
$a
Duke University.
$b
Computational Biology and Bioinformatics.
$3
1279998
773
0
$t
Dissertation Abstracts International
$g
75-02B(E).
790
$a
0066
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3601327
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9260123
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入