語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Isometries of noncompact aspherical ...
~
Avramidi, Grigori.
FindBook
Google Book
Amazon
博客來
Isometries of noncompact aspherical manifolds.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Isometries of noncompact aspherical manifolds./
作者:
Avramidi, Grigori.
面頁冊數:
58 p.
附註:
Source: Dissertation Abstracts International, Volume: 74-11(E), Section: B.
Contained By:
Dissertation Abstracts International74-11B(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3568519
ISBN:
9781303231117
Isometries of noncompact aspherical manifolds.
Avramidi, Grigori.
Isometries of noncompact aspherical manifolds.
- 58 p.
Source: Dissertation Abstracts International, Volume: 74-11(E), Section: B.
Thesis (Ph.D.)--The University of Chicago, 2013.
We investigate periodic diffeomorphisms of non-compact aspherical manifolds (and orbifolds) and describe a class of spaces that have no homotopically trivial periodic diffeomorphisms. Prominent examples are moduli spaces of curves and aspherical locally symmetric spaces. In the irreducible locally symmetric case, we show that no complete metric has more symmetry than the locally symmetric metric. In the moduli space case, we build on work of Farb and Weinberger and prove an analogue of Royden's theorem for complete finite volume metrics.
ISBN: 9781303231117Subjects--Topical Terms:
515831
Mathematics.
Isometries of noncompact aspherical manifolds.
LDR
:01403nam a2200277 4500
001
1964724
005
20141010092809.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303231117
035
$a
(MiAaPQ)AAI3568519
035
$a
AAI3568519
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Avramidi, Grigori.
$3
2101225
245
1 0
$a
Isometries of noncompact aspherical manifolds.
300
$a
58 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-11(E), Section: B.
500
$a
Advisers: Shmuel Weinberger; Benson Farb.
502
$a
Thesis (Ph.D.)--The University of Chicago, 2013.
520
$a
We investigate periodic diffeomorphisms of non-compact aspherical manifolds (and orbifolds) and describe a class of spaces that have no homotopically trivial periodic diffeomorphisms. Prominent examples are moduli spaces of curves and aspherical locally symmetric spaces. In the irreducible locally symmetric case, we show that no complete metric has more symmetry than the locally symmetric metric. In the moduli space case, we build on work of Farb and Weinberger and prove an analogue of Royden's theorem for complete finite volume metrics.
590
$a
School code: 0330.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Applied Mathematics.
$3
1669109
690
$a
0405
690
$a
0364
710
2
$a
The University of Chicago.
$b
Mathematics.
$3
2049825
773
0
$t
Dissertation Abstracts International
$g
74-11B(E).
790
$a
0330
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3568519
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9259723
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入