語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data representation for learning and...
~
Rajapakse, Vinodh Nalin.
FindBook
Google Book
Amazon
博客來
Data representation for learning and information fusion in bioinformatics.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data representation for learning and information fusion in bioinformatics./
作者:
Rajapakse, Vinodh Nalin.
面頁冊數:
150 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
Contained By:
Dissertation Abstracts International75-02B(E).
標題:
Applied Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3599545
ISBN:
9781303489198
Data representation for learning and information fusion in bioinformatics.
Rajapakse, Vinodh Nalin.
Data representation for learning and information fusion in bioinformatics.
- 150 p.
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
Thesis (Ph.D.)--University of Maryland, College Park, 2013.
This thesis deals with the rigorous application of nonlinear dimension reduction and data organization techniques to biomedical data analysis. The Laplacian Eigenmaps algorithm is representative of these methods and has been widely applied in manifold learning and related areas. While their asymptotic manifold recovery behavior has been well-characterized, the clustering properties of Laplacian embeddings with finite data are largely motivated by heuristic arguments. We develop a precise bound, characterizing cluster structure preservation under Laplacian embeddings. From this foundation, we introduce flexible and mathematically well-founded approaches for information fusion and feature representation. These methods are applied to three substantial case studies in bioinformatics, illustrating their capacity to extract scientifically valuable information from complex data.
ISBN: 9781303489198Subjects--Topical Terms:
1669109
Applied Mathematics.
Data representation for learning and information fusion in bioinformatics.
LDR
:01770nam a2200277 4500
001
1964650
005
20141010092630.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303489198
035
$a
(MiAaPQ)AAI3599545
035
$a
AAI3599545
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Rajapakse, Vinodh Nalin.
$3
2101139
245
1 0
$a
Data representation for learning and information fusion in bioinformatics.
300
$a
150 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
500
$a
Adviser: Wojciech Czaja.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2013.
520
$a
This thesis deals with the rigorous application of nonlinear dimension reduction and data organization techniques to biomedical data analysis. The Laplacian Eigenmaps algorithm is representative of these methods and has been widely applied in manifold learning and related areas. While their asymptotic manifold recovery behavior has been well-characterized, the clustering properties of Laplacian embeddings with finite data are largely motivated by heuristic arguments. We develop a precise bound, characterizing cluster structure preservation under Laplacian embeddings. From this foundation, we introduce flexible and mathematically well-founded approaches for information fusion and feature representation. These methods are applied to three substantial case studies in bioinformatics, illustrating their capacity to extract scientifically valuable information from complex data.
590
$a
School code: 0117.
650
4
$a
Applied Mathematics.
$3
1669109
650
4
$a
Biology, Bioinformatics.
$3
1018415
690
$a
0364
690
$a
0715
710
2
$a
University of Maryland, College Park.
$b
Mathematics.
$3
1266601
773
0
$t
Dissertation Abstracts International
$g
75-02B(E).
790
$a
0117
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3599545
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9259649
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入