語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Structure of Quiver Polynomials and ...
~
Kaliszewski, Ryan.
FindBook
Google Book
Amazon
博客來
Structure of Quiver Polynomials and Schur Positivity.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Structure of Quiver Polynomials and Schur Positivity./
作者:
Kaliszewski, Ryan.
面頁冊數:
66 p.
附註:
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Contained By:
Dissertation Abstracts International74-09B(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3562917
ISBN:
9781303108105
Structure of Quiver Polynomials and Schur Positivity.
Kaliszewski, Ryan.
Structure of Quiver Polynomials and Schur Positivity.
- 66 p.
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Thesis (Ph.D.)--The University of North Carolina at Chapel Hill, 2013.
Given a directed graph (quiver) and an association of a natural number to each vertex, one can construct a representation of a Lie group on a vector space. If the underlying, undirected graph of the quiver is a Dynkin graph of A-, D-, or E-type then the action has finitely many orbits. The equivariant fundamental classes of the orbit closures are the key objects of study in this paper. These fundamental classes are polynomials in universal Chern classes of a classifying space so they are referred to as "quiver polynomials."
ISBN: 9781303108105Subjects--Topical Terms:
515831
Mathematics.
Structure of Quiver Polynomials and Schur Positivity.
LDR
:02210nam a2200301 4500
001
1959350
005
20140520124008.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303108105
035
$a
(MiAaPQ)AAI3562917
035
$a
AAI3562917
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Kaliszewski, Ryan.
$3
2094746
245
1 0
$a
Structure of Quiver Polynomials and Schur Positivity.
300
$a
66 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
500
$a
Adviser: Richard Rimanyi.
502
$a
Thesis (Ph.D.)--The University of North Carolina at Chapel Hill, 2013.
520
$a
Given a directed graph (quiver) and an association of a natural number to each vertex, one can construct a representation of a Lie group on a vector space. If the underlying, undirected graph of the quiver is a Dynkin graph of A-, D-, or E-type then the action has finitely many orbits. The equivariant fundamental classes of the orbit closures are the key objects of study in this paper. These fundamental classes are polynomials in universal Chern classes of a classifying space so they are referred to as "quiver polynomials."
520
$a
It has been shown by A. Buch [B08] that these polynomials can be expressed in terms of Schur-type functions. Buch further conjectures that in this expression the coefficients are non-negative.
520
$a
Our goal is to study the coefficients and structure of these quiver polynomials using an iterated residue description due to R. Rimanyi [RR]. We introduce the Jacobi-Trudi transform, which creates an equivalence realtion on rational functions, to show that Buch's conjecture holds for a quiver polynomial if and only if there is a representative in the equivalence class that is Schur positive. Also we define a notion of strong Schur positivity and demonstrate the connection between this and Schur positivity, proving Schur positivity for some special cases of quiver polynomials.
590
$a
School code: 0153.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Applied Mathematics.
$3
1669109
690
$a
0405
690
$a
0364
710
2
$a
The University of North Carolina at Chapel Hill.
$b
Mathematics.
$3
1265876
773
0
$t
Dissertation Abstracts International
$g
74-09B(E).
790
$a
0153
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3562917
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9254178
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入