語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Barycentric calculus in Euclidean an...
~
Ungar, Abraham A.
FindBook
Google Book
Amazon
博客來
Barycentric calculus in Euclidean and hyperbolic geometry = a comparative introduction /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Barycentric calculus in Euclidean and hyperbolic geometry/ Abraham Albert Ungar.
其他題名:
a comparative introduction /
作者:
Ungar, Abraham A.
出版者:
Singapore ;World Scientific, : c2010.,
面頁冊數:
1 online resource (xiv, 344 p.) :ill.
標題:
Geometry, Plane. -
電子資源:
http://www.worldscientific.com/worldscibooks/10.1142/7740#t=toc
ISBN:
9789814304948 (electronic bk.)
Barycentric calculus in Euclidean and hyperbolic geometry = a comparative introduction /
Ungar, Abraham A.
Barycentric calculus in Euclidean and hyperbolic geometry
a comparative introduction /[electronic resource] :Abraham Albert Ungar. - Singapore ;World Scientific,c2010. - 1 online resource (xiv, 344 p.) :ill.
Includes bibliographical references and index.
The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share. In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers. The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here.
ISBN: 9789814304948 (electronic bk.)Subjects--Topical Terms:
579180
Geometry, Plane.
LC Class. No.: QA455 / .U54 2010eb
Dewey Class. No.: 516.22
Barycentric calculus in Euclidean and hyperbolic geometry = a comparative introduction /
LDR
:02732cmm a2200253Ka 4500
001
1901262
006
m o d
007
cr cnu---unuuu
008
140122s2010 si a ob 001 0 eng d
020
$a
9789814304948 (electronic bk.)
020
$a
9814304948 (electronic bk.)
020
$z
9789814304931
020
$z
981430493X
035
$a
ocn743806200
040
$a
N
$b
eng
$c
N
$d
I9W
$d
OCLCQ
$d
OCLCF
049
$a
FISA
050
4
$a
QA455
$b
.U54 2010eb
082
0 4
$a
516.22
$2
22
100
1
$a
Ungar, Abraham A.
$3
866857
245
1 0
$a
Barycentric calculus in Euclidean and hyperbolic geometry
$h
[electronic resource] :
$b
a comparative introduction /
$c
Abraham Albert Ungar.
260
$a
Singapore ;
$a
Hackensack, NJ :
$b
World Scientific,
$c
c2010.
300
$a
1 online resource (xiv, 344 p.) :
$b
ill.
504
$a
Includes bibliographical references and index.
520
$a
The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share. In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers. The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here.
588
$a
Description based on print version record.
650
0
$a
Geometry, Plane.
$3
579180
650
0
$a
Geometry, Hyperbolic.
$3
532067
650
0
$a
Triangle.
$3
1084710
650
0
$a
Calculus.
$3
517463
856
4 0
$u
http://www.worldscientific.com/worldscibooks/10.1142/7740#t=toc
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9238588
電子資源
11.線上閱覽_V
電子書
EB QA455 .U54 2010eb
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入