語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
On estimating the error in stochasti...
~
Pellissetti, Manuel Francesco.
FindBook
Google Book
Amazon
博客來
On estimating the error in stochastic model-based predictions.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
On estimating the error in stochastic model-based predictions./
作者:
Pellissetti, Manuel Francesco.
面頁冊數:
219 p.
附註:
Source: Dissertation Abstracts International, Volume: 64-02, Section: B, page: 0859.
Contained By:
Dissertation Abstracts International64-02B.
標題:
Engineering, Civil. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3080743
On estimating the error in stochastic model-based predictions.
Pellissetti, Manuel Francesco.
On estimating the error in stochastic model-based predictions.
- 219 p.
Source: Dissertation Abstracts International, Volume: 64-02, Section: B, page: 0859.
Thesis (Ph.D.)--The Johns Hopkins University, 2003.
In the rational prediction of the behavior of physical systems, models are often relied upon. These predictive tools are calibrated in terms of parameters, on the basis of data. A recurrent phenomenon in this context is the random scatter in model parameters. Stochastic models have thus been developed, in which the parameters are treated as a random entity. The probabilistic characterization of the parameters is often hampered by practical limitations and induces inaccuracies in the stochastic predictions of the response.Subjects--Topical Terms:
783781
Engineering, Civil.
On estimating the error in stochastic model-based predictions.
LDR
:02290nmm 2200301 4500
001
1861869
005
20041215074115.5
008
130614s2003 eng d
035
$a
(UnM)AAI3080743
035
$a
AAI3080743
040
$a
UnM
$c
UnM
100
1
$a
Pellissetti, Manuel Francesco.
$3
1949449
245
1 0
$a
On estimating the error in stochastic model-based predictions.
300
$a
219 p.
500
$a
Source: Dissertation Abstracts International, Volume: 64-02, Section: B, page: 0859.
500
$a
Adviser: Roger Ghanem.
502
$a
Thesis (Ph.D.)--The Johns Hopkins University, 2003.
520
$a
In the rational prediction of the behavior of physical systems, models are often relied upon. These predictive tools are calibrated in terms of parameters, on the basis of data. A recurrent phenomenon in this context is the random scatter in model parameters. Stochastic models have thus been developed, in which the parameters are treated as a random entity. The probabilistic characterization of the parameters is often hampered by practical limitations and induces inaccuracies in the stochastic predictions of the response.
520
$a
This thesis reports a novel methodology to estimate the error in stochastic model-based predictions. It relies on the response representation in a Polynomial-Chaos basis. The error is approximated via Taylor expansion and thus hinges on the explicit computation of the stochastic response gradient. The computed error estimate sheds light on the sensitivity of particular response statistics with respect to statistics of the stochastic parameters. This helps to raise the confidence in the model predictions.
520
$a
The method is demonstrated on two model problems, involving a Bernoulli beam with random bending rigidity and the potential flow in a porous medium with random conductivity. In both cases the parameters are modelled as a random field and are discretized with the Karhunen-Loeve expansion. The finite element method is used for the spatial discretization.
590
$a
School code: 0098.
650
4
$a
Engineering, Civil.
$3
783781
650
4
$a
Applied Mechanics.
$3
1018410
650
4
$a
Operations Research.
$3
626629
690
$a
0543
690
$a
0346
690
$a
0796
710
2 0
$a
The Johns Hopkins University.
$3
1017431
773
0
$t
Dissertation Abstracts International
$g
64-02B.
790
1 0
$a
Ghanem, Roger,
$e
advisor
790
$a
0098
791
$a
Ph.D.
792
$a
2003
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3080743
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9180569
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入