語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mining skin lesion data with cluster...
~
Guo, Wenzhao.
FindBook
Google Book
Amazon
博客來
Mining skin lesion data with clustering techniques.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mining skin lesion data with clustering techniques./
作者:
Guo, Wenzhao.
面頁冊數:
57 p.
附註:
Source: Masters Abstracts International, Volume: 42-01, page: 0258.
Contained By:
Masters Abstracts International42-01.
標題:
Computer Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1414744
Mining skin lesion data with clustering techniques.
Guo, Wenzhao.
Mining skin lesion data with clustering techniques.
- 57 p.
Source: Masters Abstracts International, Volume: 42-01, page: 0258.
Thesis (M.S.C.S.)--The University of Texas at Arlington, 2003.
Computer-aided color analysis of skin lesions has been seen as a useful tool for provision of diagnostic and prognostic information and early detection of skin cancer. In this thesis, we develop a color variegation analysis program by using a clustering technique, DBSCAN, and a traditional image segmentation method, split-and-merge. For both methods, the program segments lesion images, identifies sub-regions inside lesions and extracts color features in such a way that it automatically sets and adjusts processing parameters based on the overall color information of images. The results from the computer program and human perception are compared, and correlation and agreement between them are shown positive and statistically significant. In addition, another clustering technique, STING, is applied to identify various color regions existing in lesions and to detect any of six distinct colors set by ABCD rule of dermatoscopy: white, blue, black, red, light brown, and dark brown.Subjects--Topical Terms:
626642
Computer Science.
Mining skin lesion data with clustering techniques.
LDR
:01820nmm 2200265 4500
001
1861459
005
20041111121801.5
008
130614s2003 eng d
035
$a
(UnM)AAI1414744
035
$a
AAI1414744
040
$a
UnM
$c
UnM
100
1
$a
Guo, Wenzhao.
$3
1949058
245
1 0
$a
Mining skin lesion data with clustering techniques.
300
$a
57 p.
500
$a
Source: Masters Abstracts International, Volume: 42-01, page: 0258.
500
$a
Supervisor: Alp Aslandogan.
502
$a
Thesis (M.S.C.S.)--The University of Texas at Arlington, 2003.
520
$a
Computer-aided color analysis of skin lesions has been seen as a useful tool for provision of diagnostic and prognostic information and early detection of skin cancer. In this thesis, we develop a color variegation analysis program by using a clustering technique, DBSCAN, and a traditional image segmentation method, split-and-merge. For both methods, the program segments lesion images, identifies sub-regions inside lesions and extracts color features in such a way that it automatically sets and adjusts processing parameters based on the overall color information of images. The results from the computer program and human perception are compared, and correlation and agreement between them are shown positive and statistically significant. In addition, another clustering technique, STING, is applied to identify various color regions existing in lesions and to detect any of six distinct colors set by ABCD rule of dermatoscopy: white, blue, black, red, light brown, and dark brown.
590
$a
School code: 2502.
650
4
$a
Computer Science.
$3
626642
650
4
$a
Health Sciences, Oncology.
$3
1018566
690
$a
0984
690
$a
0992
710
2 0
$a
The University of Texas at Arlington.
$3
1025869
773
0
$t
Masters Abstracts International
$g
42-01.
790
1 0
$a
Aslandogan, Alp,
$e
advisor
790
$a
2502
791
$a
M.S.C.S.
792
$a
2003
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1414744
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9180159
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入