Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Part I. Slip behavior of the San An...
~
Liu, Jing.
Linked to FindBook
Google Book
Amazon
博客來
Part I. Slip behavior of the San Andreas Fault through several earthquake cycles. Part II. A structural interpretation of the aftershock "cloud" of the 1992 M(w) 7.3 Landers earthquake.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Part I. Slip behavior of the San Andreas Fault through several earthquake cycles. Part II. A structural interpretation of the aftershock "cloud" of the 1992 M(w) 7.3 Landers earthquake./
Author:
Liu, Jing.
Description:
257 p.
Notes:
Source: Dissertation Abstracts International, Volume: 64-02, Section: B, page: 0594.
Contained By:
Dissertation Abstracts International64-02B.
Subject:
Geology. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3081248
Part I. Slip behavior of the San Andreas Fault through several earthquake cycles. Part II. A structural interpretation of the aftershock "cloud" of the 1992 M(w) 7.3 Landers earthquake.
Liu, Jing.
Part I. Slip behavior of the San Andreas Fault through several earthquake cycles. Part II. A structural interpretation of the aftershock "cloud" of the 1992 M(w) 7.3 Landers earthquake.
- 257 p.
Source: Dissertation Abstracts International, Volume: 64-02, Section: B, page: 0594.
Thesis (Ph.D.)--California Institute of Technology, 2003.
Part 1 of this thesis addresses the question of how variable fault slip per event is through time. This question is important, because progress in understanding and forecasting large earthquakes depends critically on precise reconstruction of the variation of rupture magnitude with time. Well-documented examples of slip measurements of successive past earthquakes rarely span more than three earthquake cycles. The dearth of accurate measurements of serial slip is partly due to the obliteration of piercing lines that we can use to separate the offsets associated with individual earthquakes.Subjects--Topical Terms:
516570
Geology.
Part I. Slip behavior of the San Andreas Fault through several earthquake cycles. Part II. A structural interpretation of the aftershock "cloud" of the 1992 M(w) 7.3 Landers earthquake.
LDR
:03457nmm 2200289 4500
001
1859334
005
20041014084348.5
008
130614s2003 eng d
035
$a
(UnM)AAI3081248
035
$a
AAI3081248
040
$a
UnM
$c
UnM
100
1
$a
Liu, Jing.
$3
1027965
245
1 0
$a
Part I. Slip behavior of the San Andreas Fault through several earthquake cycles. Part II. A structural interpretation of the aftershock "cloud" of the 1992 M(w) 7.3 Landers earthquake.
300
$a
257 p.
500
$a
Source: Dissertation Abstracts International, Volume: 64-02, Section: B, page: 0594.
500
$a
Adviser: Kerry Sieh.
502
$a
Thesis (Ph.D.)--California Institute of Technology, 2003.
520
$a
Part 1 of this thesis addresses the question of how variable fault slip per event is through time. This question is important, because progress in understanding and forecasting large earthquakes depends critically on precise reconstruction of the variation of rupture magnitude with time. Well-documented examples of slip measurements of successive past earthquakes rarely span more than three earthquake cycles. The dearth of accurate measurements of serial slip is partly due to the obliteration of piercing lines that we can use to separate the offsets associated with individual earthquakes.
520
$a
The special configuration of a series of channels offset across the San Andreas fault, near Wallace Creek has enabled me to determine the styles and the magnitudes of slip of the most recent 6 events at this locality. At the site, a feeder channel cuts a Pleistocene alluvial fan on the upstream side of the fault. On the downstream side, several small channels were offset dextrally from the source and sequentially abandoned. We opened a latticework of trenches across the offset channels on both sides of the fault. The trenches across the mouth of the upstream feeder channel exposed a set of nested channels; downstream trenches revealed several singular channels. The elevations, shapes, stratigraphy and ages of channels provide reliable information for correlating channels across the fault. 3-D excavations have allowed me to locate accurately the offset channel pairs and to determine the amounts of motion with small uncertainties. The dextral slips associated with the latest 6 events are, from the youngest to oldest, ∼8 m, ∼7.5 m, 5.5 m, ∼1.5 m, ∼8.0 m, and ∼5.5 m. The high occurrence of events with slip of about 7.5 m suggests that the magnitude of slip at a point along the fault does not result from a random process. But the slip is not as regular as predicted by characteristic models either. Thus, data at the site do not support perfectly characteristic behavior, but do show a significant degree of regularity.
520
$a
Part II of the thesis demonstrates that Landers aftershocks constituted primarily a several-km-wide damage zone centered on the mainshock rupture plane. Most aftershocks probably did not occur on the same surfaces that had moved during the mainshock. Rather, the aftershock populations revealed the nature of the fractured medium around the principal faults, and the general structure of a fault zone.
590
$a
School code: 0037.
650
4
$a
Geology.
$3
516570
650
4
$a
Geophysics.
$3
535228
690
$a
0372
690
$a
0373
710
2 0
$a
California Institute of Technology.
$3
726902
773
0
$t
Dissertation Abstracts International
$g
64-02B.
790
1 0
$a
Sieh, Kerry,
$e
advisor
790
$a
0037
791
$a
Ph.D.
792
$a
2003
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3081248
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9178034
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login