語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Morse-Bott approach to contact hom...
~
Bourgeois, Frederic.
FindBook
Google Book
Amazon
博客來
A Morse-Bott approach to contact homology.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A Morse-Bott approach to contact homology./
作者:
Bourgeois, Frederic.
面頁冊數:
123 p.
附註:
Source: Dissertation Abstracts International, Volume: 63-04, Section: B, page: 1872.
Contained By:
Dissertation Abstracts International63-04B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3048497
ISBN:
0493628282
A Morse-Bott approach to contact homology.
Bourgeois, Frederic.
A Morse-Bott approach to contact homology.
- 123 p.
Source: Dissertation Abstracts International, Volume: 63-04, Section: B, page: 1872.
Thesis (Ph.D.)--Stanford University, 2002.
Contact homology was introduced by Eliashberg, Givental and Hofer. In this theory, we count holomorphic curves in the symplectization of a contact manifold, which are asymptotic to periodic Reeb orbits. These closed orbits are assumed to be nondegenerate and, in particular, isolated. This assumption makes practical computations of contact homology very difficult.
ISBN: 0493628282Subjects--Topical Terms:
515831
Mathematics.
A Morse-Bott approach to contact homology.
LDR
:01983nmm 2200289 4500
001
1853814
005
20040517094426.5
008
130614s2002 eng d
020
$a
0493628282
035
$a
(UnM)AAI3048497
035
$a
AAI3048497
040
$a
UnM
$c
UnM
100
1
$a
Bourgeois, Frederic.
$3
1941666
245
1 0
$a
A Morse-Bott approach to contact homology.
300
$a
123 p.
500
$a
Source: Dissertation Abstracts International, Volume: 63-04, Section: B, page: 1872.
500
$a
Adviser: Yakov Eliashberg.
502
$a
Thesis (Ph.D.)--Stanford University, 2002.
520
$a
Contact homology was introduced by Eliashberg, Givental and Hofer. In this theory, we count holomorphic curves in the symplectization of a contact manifold, which are asymptotic to periodic Reeb orbits. These closed orbits are assumed to be nondegenerate and, in particular, isolated. This assumption makes practical computations of contact homology very difficult.
520
$a
In this thesis, we develop computational methods for contact homology in Morse-Bott situations, in which closed Reeb orbits form submanifolds of the contact manifold. We require some Morse-Bott type assumptions on the contact form, a positivity property for the Maslov index, mild requirements on the Reeb flow, and <italic>c</italic><sub>1</sub>(ξ) = 0.
520
$a
We then use these methods to compute contact homology for several examples, in order to illustrate their efficiency. As an application of these contact invariants, we show that <italic>T</italic><super>5</super> and <italic>T </italic><super>2</super> × <italic>S</italic><super>3</super> carry infinitely many pairwise non-isomorphic contact structures in the trivial formal homotopy class.
590
$a
School code: 0212.
650
4
$a
Mathematics.
$3
515831
690
$a
0405
710
2 0
$a
Stanford University.
$3
754827
773
0
$t
Dissertation Abstracts International
$g
63-04B.
790
1 0
$a
Eliashberg, Yakov,
$e
advisor
790
$a
0212
791
$a
Ph.D.
792
$a
2002
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3048497
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9172395
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入