語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Existence, stability and dynamics of...
~
Law, Kody John Hoffman.
FindBook
Google Book
Amazon
博客來
Existence, stability and dynamics of solitary waves in nonlinear Schrodinger models with periodic potentials.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Existence, stability and dynamics of solitary waves in nonlinear Schrodinger models with periodic potentials./
作者:
Law, Kody John Hoffman.
面頁冊數:
206 p.
附註:
Source: Dissertation Abstracts International, Volume: 71-04, Section: B, page: 2475.
Contained By:
Dissertation Abstracts International71-04B.
標題:
Applied Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3397723
ISBN:
9781109698954
Existence, stability and dynamics of solitary waves in nonlinear Schrodinger models with periodic potentials.
Law, Kody John Hoffman.
Existence, stability and dynamics of solitary waves in nonlinear Schrodinger models with periodic potentials.
- 206 p.
Source: Dissertation Abstracts International, Volume: 71-04, Section: B, page: 2475.
Thesis (Ph.D.)--University of Massachusetts Amherst, 2010.
The focus of this dissertation is the existence, stability, and resulting dynamical evolution of localized stationary solutions to Nonlinear Schrodinger (NLS) equations with periodic confining potentials in 2(+1) dimensions. I will make predictions about these properties based on a discrete lattice model of coupled ordinary differential equations with the appropriate symmetry. The latter has been justified by Wannier function expansions in a so-called tight-binding approximation in the appropriate parametric regime. Numerical results for the full 2(+1)-D continuum model will be qualitatively compared with discrete model predictions as well as with nonlinear optics experiments in optically induced photonic lattices in photorefractive crystals. The predictions are also relevant for BECs (Bose-Einstein Condensates) in optical lattices.
ISBN: 9781109698954Subjects--Topical Terms:
1669109
Applied Mathematics.
Existence, stability and dynamics of solitary waves in nonlinear Schrodinger models with periodic potentials.
LDR
:01949nam 2200313 4500
001
1404530
005
20111130124027.5
008
130515s2010 ||||||||||||||||| ||eng d
020
$a
9781109698954
035
$a
(UMI)AAI3397723
035
$a
AAI3397723
040
$a
UMI
$c
UMI
100
1
$a
Law, Kody John Hoffman.
$3
1683857
245
1 0
$a
Existence, stability and dynamics of solitary waves in nonlinear Schrodinger models with periodic potentials.
300
$a
206 p.
500
$a
Source: Dissertation Abstracts International, Volume: 71-04, Section: B, page: 2475.
500
$a
Adviser: Panayotis G. Kevrekidis.
502
$a
Thesis (Ph.D.)--University of Massachusetts Amherst, 2010.
520
$a
The focus of this dissertation is the existence, stability, and resulting dynamical evolution of localized stationary solutions to Nonlinear Schrodinger (NLS) equations with periodic confining potentials in 2(+1) dimensions. I will make predictions about these properties based on a discrete lattice model of coupled ordinary differential equations with the appropriate symmetry. The latter has been justified by Wannier function expansions in a so-called tight-binding approximation in the appropriate parametric regime. Numerical results for the full 2(+1)-D continuum model will be qualitatively compared with discrete model predictions as well as with nonlinear optics experiments in optically induced photonic lattices in photorefractive crystals. The predictions are also relevant for BECs (Bose-Einstein Condensates) in optical lattices.
590
$a
School code: 0118.
650
4
$a
Applied Mathematics.
$3
1669109
650
4
$a
Physics, Optics.
$3
1018756
690
$a
0364
690
$a
0752
710
2
$a
University of Massachusetts Amherst.
$b
Mathematics.
$3
1683858
773
0
$t
Dissertation Abstracts International
$g
71-04B.
790
1 0
$a
Kevrekidis, Panayotis G.,
$e
advisor
790
1 0
$a
Whitaker, Nathaniel
$e
committee member
790
1 0
$a
Johnston, Hans
$e
committee member
790
1 0
$a
Mountziaris, T.J.
$e
committee member
790
$a
0118
791
$a
Ph.D.
792
$a
2010
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3397723
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9167669
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入