語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Breakdown criteria for nonvacuum Ein...
~
Shao, Arick.
FindBook
Google Book
Amazon
博客來
Breakdown criteria for nonvacuum Einstein equations.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Breakdown criteria for nonvacuum Einstein equations./
作者:
Shao, Arick.
面頁冊數:
262 p.
附註:
Source: Dissertation Abstracts International, Volume: 71-06, Section: B, page: 3711.
Contained By:
Dissertation Abstracts International71-06B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3410986
ISBN:
9781124046952
Breakdown criteria for nonvacuum Einstein equations.
Shao, Arick.
Breakdown criteria for nonvacuum Einstein equations.
- 262 p.
Source: Dissertation Abstracts International, Volume: 71-06, Section: B, page: 3711.
Thesis (Ph.D.)--Princeton University, 2010.
We generalize a recent "breakdown criterion" result of S. Klainerman and I. Rodnianski, which states roughly that an Einstein vacuum spacetime, given as a CMC foliation, can be extended if the second fundamental form and the derivative of the lapse of the foliation are uniformly bounded. We adapt this theorem and its proof to Einstein-scalar and Einstein-Maxwell spacetimes. In particular, we deal with additional issues resulting from nontrivial Ricci curvature and the coupling between the Einstein and the field equations. The results we prove can be directly extended to Einstein-Klein-Gordon and Einstein-Yang-Mills spacetimes.
ISBN: 9781124046952Subjects--Topical Terms:
515831
Mathematics.
Breakdown criteria for nonvacuum Einstein equations.
LDR
:01500nam 2200277 4500
001
1392568
005
20110218114615.5
008
130515s2010 ||||||||||||||||| ||eng d
020
$a
9781124046952
035
$a
(UMI)AAI3410986
035
$a
AAI3410986
040
$a
UMI
$c
UMI
100
1
$a
Shao, Arick.
$3
1671026
245
1 0
$a
Breakdown criteria for nonvacuum Einstein equations.
300
$a
262 p.
500
$a
Source: Dissertation Abstracts International, Volume: 71-06, Section: B, page: 3711.
500
$a
Adviser: Sergiu Klainerman.
502
$a
Thesis (Ph.D.)--Princeton University, 2010.
520
$a
We generalize a recent "breakdown criterion" result of S. Klainerman and I. Rodnianski, which states roughly that an Einstein vacuum spacetime, given as a CMC foliation, can be extended if the second fundamental form and the derivative of the lapse of the foliation are uniformly bounded. We adapt this theorem and its proof to Einstein-scalar and Einstein-Maxwell spacetimes. In particular, we deal with additional issues resulting from nontrivial Ricci curvature and the coupling between the Einstein and the field equations. The results we prove can be directly extended to Einstein-Klein-Gordon and Einstein-Yang-Mills spacetimes.
590
$a
School code: 0181.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Physics, Theory.
$3
1019422
690
$a
0405
690
$a
0753
710
2
$a
Princeton University.
$3
645579
773
0
$t
Dissertation Abstracts International
$g
71-06B.
790
1 0
$a
Klainerman, Sergiu,
$e
advisor
790
$a
0181
791
$a
Ph.D.
792
$a
2010
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3410986
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9155707
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入