FindBook      Google Book      Amazon      博客來     
  • Data mining = practical machine learning tools and techniques.
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Data mining/
    其他題名: practical machine learning tools and techniques.
    作者: Witten, I. H.
    其他作者: Hall, Mark A.
    出版者: Burlington, MA :Morgan Kaufmann, : c2011.,
    面頁冊數: 1 online resource (xxxiii, 629 p.) :ill.
    附註: Machine generated contents note: PART I: Machine Learning Tools and Techniques. Ch 1. What's It All About? Ch 2. Input: Concepts, Instances, Attributes. Ch 3. Output: Knowledge Representation. Ch 4. Algorithms: The Basic Methods. Ch 5. Credibility: Evaluating What's Been Learned. PART II: Advanced Data Mining. Ch 6. Implementations: Real Machine Learning Schemes. Ch 7. Data Transformation. Ch 8. Ensemble Learning. Ch 9. Moving On: Applications and Beyond. PART III: The Weka Data MiningWorkbench. Ch 10. Introduction to Weka. Ch 11. The Explorer. Ch 12. The Knowledge Flow Interface. Ch 13. The Experimenter. Ch 14 The Command-Line Interface. Ch 15. Embedded Machine Learning. Ch 16. Writing New Learning Schemes. Ch 17. Tutorial Exercises for the Weka Explorer.
    內容註: PART I: Introduction to Data Mining Ch 1 What's It All About? Ch 2 Input: Concepts, Instances, Attributes Ch 3 Output: Knowledge Representation Ch 4 Algorithms: The Basic Methods Ch 5 Credibility: Evaluating What's Been Learned PART II: Advanced Data Mining Ch 6 Implementations: Real Machine Learning Schemes Ch 7 Data Transformation Ch 8 Ensemble Learning Ch 9 Moving On: Applications and Beyond PART III: The Weka Data MiningWorkbench Ch 10 Introduction to Weka Ch 11 The Explorer Ch 12 The Knowledge Flow Interface Ch 13 The Experimenter Ch 14 The Command-Line Interface Ch 15 Embedded Machine Learning Ch 16 Writing New Learning Schemes Ch 17 Tutorial Exercises for the Weka Explorer.
    內容註: Machine generated contents note: PART I: Machine Learning Tools and Techniques. Ch 1. What's It All About? Ch 2. Input: Concepts, Instances, Attributes. Ch 3. Output: Knowledge Representation. Ch 4. Algorithms: The Basic Methods. Ch 5. Credibility: Evaluating What's Been Learned. PART II: Advanced Data Mining. Ch 6. Implementations: Real Machine Learning Schemes. Ch 7. Data Transformation. Ch 8. Ensemble Learning. Ch 9. Moving On: Applications and Beyond. PART III: The Weka Data MiningWorkbench. Ch 10. Introduction to Weka. Ch 11. The Explorer. Ch 12. The Knowledge Flow Interface. Ch 13. The Experimenter. Ch 14 The Command-Line Interface. Ch 15. Embedded Machine Learning. Ch 16. Writing New Learning Schemes. Ch 17. Tutorial Exercises for the Weka Explorer.
    標題: Data mining. -
    電子資源: http://www.sciencedirect.com/science/book/9780123748560
    ISBN: 9780123748560 (electronic bk.)
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9148574 電子資源 11.線上閱覽_V 電子書 EB QA76.9.D343 W58 2011 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入