語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematics for neuroscientists
~
Gabbiani, Fabrizio.
FindBook
Google Book
Amazon
博客來
Mathematics for neuroscientists
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mathematics for neuroscientists/ Fabrizio Gabbiani, Steven J. Cox.
作者:
Gabbiani, Fabrizio.
其他作者:
Cox, Steven J.
出版者:
Amsterdam ;Elsevier Academic Press, : 2010,
面頁冊數:
xi, 486 p. :ill. (some col.) ;28 cm.
內容註:
Passive isopotential cell -- Differential equations -- Active isopotential cell -- Quasi-active isopotential cell -- Passive cable -- Fourier series and transforms -- Passive dendritic tree -- Active dendritic tree -- Reduced single neuron models -- Probability and random variables -- Synaptic transmission and quantal release -- Neuronal calcium signaling -- Singular value decomposition and applications -- Quantification of spike train variability -- Stochastic processes -- Membrane noise -- Power and cross spectra -- Natural light signals and phototransduction -- Firing rate codes and early vision -- Models of simple and complex cells -- Stochastic estimation theory -- Reverse-correlation and spike train decoding -- Signal detection theory -- Relating neuronal responses and psychophysics -- Population codes -- Neuronal networks -- Solutions to selected exercises.
標題:
Computational Biology - methods. -
電子資源:
http://www.sciencedirect.com/science/book/9780123748829An electronic book accessible through the World Wide Web; click for information
ISBN:
9780123748829
Mathematics for neuroscientists
Gabbiani, Fabrizio.
Mathematics for neuroscientists
[electronic resource] /Fabrizio Gabbiani, Steven J. Cox. - 1st ed. - Amsterdam ;Elsevier Academic Press,2010 - xi, 486 p. :ill. (some col.) ;28 cm. - ScienceDirect.Book series..
Includes bibliographical references (p. 473-482) and index.
Passive isopotential cell -- Differential equations -- Active isopotential cell -- Quasi-active isopotential cell -- Passive cable -- Fourier series and transforms -- Passive dendritic tree -- Active dendritic tree -- Reduced single neuron models -- Probability and random variables -- Synaptic transmission and quantal release -- Neuronal calcium signaling -- Singular value decomposition and applications -- Quantification of spike train variability -- Stochastic processes -- Membrane noise -- Power and cross spectra -- Natural light signals and phototransduction -- Firing rate codes and early vision -- Models of simple and complex cells -- Stochastic estimation theory -- Reverse-correlation and spike train decoding -- Signal detection theory -- Relating neuronal responses and psychophysics -- Population codes -- Neuronal networks -- Solutions to selected exercises.
This book provides a grounded introduction to the fundamental concepts of mathematics, neuroscience and their combined use, thus providing the reader with a springboard to cutting-edge research topics and fostering a tighter integration of mathematics and neuroscience for future generations of students. The book alternates between mathematical chapters, introducing important concepts and numerical methods, and neurobiological chapters, applying these concepts and methods to specific topics. It covers topics ranging from classical cellular biophysics and proceeding up to systems level neuroscience. Starting at an introductory mathematical level, presuming no more than calculus through elementary differential equations, the level will build up as increasingly complex techniques are introduced and combined with earlier ones. Each chapter includes a comprehensive series of exercises with solutions, taken from the set developed by the authors in their course lectures. MATLAB code is included for each computational figure, to allow the reader to reproduce them. Biographical notes referring the reader to more specialized literature and additional mathematical material that may be needed either to deepen the reader's understanding or to introduce basic concepts for less mathematically inclined readers completes each chapter. A very didactic and systematic introduction to mathematical concepts of importance for the analysis of data and the formulation of concepts based on experimental data in neuroscience Provides introductions to linear algebra, ordinary and partial differential equations, Fourier transforms, probabilities and stochastic processes Introduces numerical methods used to implement algorithms related to each mathematical concept Illustrates numerical methods by applying them to specific topics in neuroscience, including Hodgkin-Huxley equations, probabilities to describe stochastic release, stochastic processes to describe noise in neurons, Fourier transforms to describe the receptive fields of visual neurons Provides implementation examples in MATLAB code, also included for download on the accompanying support website (which will be updated with additional code and in line with major MATLAB releases) Allows the mathematical novice to analyze their results in more sophisticated ways, and consider them in a broader theoretical framework.
Electronic reproduction.
Amsterdam :
Elsevier Science & Technology,
2010.
Mode of access: World Wide Web.
ISBN: 9780123748829
Source: 167007:167242Elsevier Science & Technologyhttp://www.sciencedirect.comSubjects--Topical Terms:
768314
Computational Biology
--methods.Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: QP356 / .G22 2010
Dewey Class. No.: 612.8
Mathematics for neuroscientists
LDR
:04902cmm 2200361Ka 4500
001
1033149
003
OCoLC
005
20110614113942.0
006
m d
007
cr cn|||||||||
008
120420s2010 ne a sb 001 0 eng d
019
$a
664234213
020
$a
9780123748829
020
$a
0123748828
029
1
$a
NZ1
$b
13642330
035
$a
(OCoLC)668196264
$z
(OCoLC)664234213
035
$a
ocn668196264
037
$a
167007:167242
$b
Elsevier Science & Technology
$n
http://www.sciencedirect.com
040
$a
OPELS
$b
eng
$c
OPELS
$d
CDX
$d
LGG
049
$a
TEFA
050
1 4
$a
QP356
$b
.G22 2010
082
0 4
$a
612.8
$2
22
100
1
$a
Gabbiani, Fabrizio.
$3
1362636
245
1 0
$a
Mathematics for neuroscientists
$h
[electronic resource] /
$c
Fabrizio Gabbiani, Steven J. Cox.
250
$a
1st ed.
260
$a
Amsterdam ;
$a
Boston :
$b
Elsevier Academic Press,
$c
2010
300
$a
xi, 486 p. :
$b
ill. (some col.) ;
$c
28 cm.
504
$a
Includes bibliographical references (p. 473-482) and index.
505
0
$a
Passive isopotential cell -- Differential equations -- Active isopotential cell -- Quasi-active isopotential cell -- Passive cable -- Fourier series and transforms -- Passive dendritic tree -- Active dendritic tree -- Reduced single neuron models -- Probability and random variables -- Synaptic transmission and quantal release -- Neuronal calcium signaling -- Singular value decomposition and applications -- Quantification of spike train variability -- Stochastic processes -- Membrane noise -- Power and cross spectra -- Natural light signals and phototransduction -- Firing rate codes and early vision -- Models of simple and complex cells -- Stochastic estimation theory -- Reverse-correlation and spike train decoding -- Signal detection theory -- Relating neuronal responses and psychophysics -- Population codes -- Neuronal networks -- Solutions to selected exercises.
520
$a
This book provides a grounded introduction to the fundamental concepts of mathematics, neuroscience and their combined use, thus providing the reader with a springboard to cutting-edge research topics and fostering a tighter integration of mathematics and neuroscience for future generations of students. The book alternates between mathematical chapters, introducing important concepts and numerical methods, and neurobiological chapters, applying these concepts and methods to specific topics. It covers topics ranging from classical cellular biophysics and proceeding up to systems level neuroscience. Starting at an introductory mathematical level, presuming no more than calculus through elementary differential equations, the level will build up as increasingly complex techniques are introduced and combined with earlier ones. Each chapter includes a comprehensive series of exercises with solutions, taken from the set developed by the authors in their course lectures. MATLAB code is included for each computational figure, to allow the reader to reproduce them. Biographical notes referring the reader to more specialized literature and additional mathematical material that may be needed either to deepen the reader's understanding or to introduce basic concepts for less mathematically inclined readers completes each chapter. A very didactic and systematic introduction to mathematical concepts of importance for the analysis of data and the formulation of concepts based on experimental data in neuroscience Provides introductions to linear algebra, ordinary and partial differential equations, Fourier transforms, probabilities and stochastic processes Introduces numerical methods used to implement algorithms related to each mathematical concept Illustrates numerical methods by applying them to specific topics in neuroscience, including Hodgkin-Huxley equations, probabilities to describe stochastic release, stochastic processes to describe noise in neurons, Fourier transforms to describe the receptive fields of visual neurons Provides implementation examples in MATLAB code, also included for download on the accompanying support website (which will be updated with additional code and in line with major MATLAB releases) Allows the mathematical novice to analyze their results in more sophisticated ways, and consider them in a broader theoretical framework.
533
$a
Electronic reproduction.
$b
Amsterdam :
$c
Elsevier Science & Technology,
$d
2010.
$n
Mode of access: World Wide Web.
$n
System requirements: Web browser.
$n
Title from title screen (viewed on Sep. 27, 2010).
$n
Access may be restricted to users at subscribing institutions.
650
1 2
$a
Computational Biology
$x
methods.
$3
768314
650
2 2
$a
Models, Neurological.
$3
610860
650
2 2
$a
Nerve Net.
$3
610861
650
2 2
$a
Neurons
$x
physiology.
$3
610858
650
2 2
$a
Neurosciences
$x
methods.
$3
610862
650
2 2
$a
Synaptic Transmission.
$3
1362610
650
0
$a
Computational neuroscience.
$3
610819
650
0
$a
Computational biology.
$3
590653
650
0
$a
Neurosciences.
$3
588700
655
7
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Cox, Steven J.
$q
(Steven James),
$d
1960-
$3
1362637
710
2
$a
ScienceDirect (Online service)
$3
848416
776
0 8
$i
Print version:
$a
Gabbiani, Fabrizio.
$t
Mathematics for neuroscientists.
$b
1st ed.
$d
Amsterdam ; Boston : Elsevier Academic Press, 2010
$z
9780123748829
$w
(OCoLC)441761565
830
0
$a
ScienceDirect.
$p
Book series.
$3
1362638
856
4 0
$3
ScienceDirect
$u
http://www.sciencedirect.com/science/book/9780123748829
$z
An electronic book accessible through the World Wide Web; click for information
938
$a
Coutts Information Services
$b
COUT
$n
15337534
994
$a
C0
$b
TEF
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9134424
電子資源
11.線上閱覽_V
電子書
EB QP356 G112
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入