語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Green chemistry and engineering : = ...
~
Jimenez-Gonzalez, Concepcion.
FindBook
Google Book
Amazon
博客來
Green chemistry and engineering : = a practical design approach /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Green chemistry and engineering :/ Concepcion Jimenez-Gonzalez, David J. C. Constable.
其他題名:
a practical design approach /
作者:
Jimenez-Gonzalez, Concepcion.
其他作者:
Constable, David J. C.,
出版者:
Hoboken, NJ :Wiley, : c2011.,
面頁冊數:
xiii, 680 p. :ill. ;27 cm.
內容註:
Machine generated contents note: pt. I GREEEN CHEMISTRY AND GREEN ENGINEERING IN THE MOVEMENT TOWARD SUSTAINABILITY -- 1.Green Chemistry and Engineering in the Context of Sustainability -- 1.1.Why Green Chemistry? -- 1.2.Green Chemistry, Green Engineering, and Sustainability -- 1.3.Until Death Do Us Part: A Marriage of Disciplines -- Problems -- References -- 2.Green Chemistry and Green Engineering Principles -- 2.1.Green Chemistry Principles -- 2.2.Twelve More Green Chemistry Principles -- 2.3.Twelve Principles of Green Engineering -- 2.4.The San Destin Declaration: Principles of Green Engineering -- 2.5.Simplifying the Principles -- Problems -- References -- 3.Starting with the Basics: Integrating Environment, Health, and Safety -- 3.1.Environmental Issues of Importance -- 3.2.Health Issues of Importance -- 3.3.Safety Issues of Importance -- 3.4.Hazard and Risk -- 3.5.Integrated Perspective on Environment, Health, and Safety -- Problems -- References -- 4.How Do We Know It's Green? A Metrics Primer -- 4.1.General Considerations About Green Chemistry and Engineering Metrics -- 4.2.Chemistry Metrics -- 4.3.Process Metrics -- 4.4.Cost Implications and Green Chemistry Metrics -- 4.5.A Final Word on Green Metrics -- Problems -- References -- pt. II THE BEGINNING: DESIGNING GREENER, SAFER CHEMICAL SYNTHESES -- 5.Route and Chemistry Selection -- 5.1.The Challenge of Synthetic Chemistry -- 5.2.Making Molecules -- 5.3.Using Different Chemistries -- 5.4.Route Strategy -- 5.5.Protection-Deprotection -- 5.6.Going from a Route to a Process -- Problems -- References -- 6.Material Selection: Solvents, Catalysts, and Reagents -- 6.1.Solvents and Solvent Selection Strategies -- 6.2.Catalysts and Catalyst Selection Strategies -- 6.3.Other Reagents -- Problems -- References -- 7.Reaction Conditions and Green Chemistry -- 7.1.Stoichiometry -- 7.2.Design of Experiments -- 7.3.Temperature -- 7.4.Solvent Use -- 7.5.Solvents and Energy Use -- 7.6.Reaction and Processing Time -- 7.7.Order and Rate of Reagent Addition -- 7.8.Mixing -- Appendix 7.1 Common Practices in Batch Chemical Processing and Their Green Chemistry Impacts -- Problems -- References -- 8.Bioprocesses -- 8.1.How Biotechnology Has Been Used -- 8.2.Are Bioprocesses Green? -- 8.3.What Is Involved in Bioprocessing -- 8.4.Examples of Products Obtained from Bioprocessing -- Problems -- References -- pt. III FROM THE FLASK TO THE PLANT: DESIGNING GREENER, SAFER, MORE SUSTAINABLE MANUFACTURING PROCESSES -- 9.Mass and Energy Balances -- 9.1.Why We Need Mass Balances, Energy Balances, and Process Flow Diagrams -- 9.2.Types of Processes -- 9.3.Process Flow Diagams -- 9.4.Mass Balances -- 9.5.Energy Balances -- 9.6.Measuring Greenness of a Process Through Energy and Mass Balances -- Problems -- References -- 10.The Scale-up Effect -- 10.1.The Scale-up Problem -- 10.2.Factors Affecting Scale-up -- 10.3.Scale-up Tools -- 10.4.Numbering-up vs. Scaling-up -- Problems -- References -- 11.Reactors and Separations -- 11.1.Reactors and Separations in Green Engineering -- 11.2.Reactors -- 11.3.Separations and Other Unit Operations -- 11.4.Batch vs. Continuous Processes -- 11.5.Does Size Matter? -- Problems -- References -- 12.Process Synthesis -- 12.1.Process Synthesis Background -- 12.2.Process Synthesis Approaches and Green Engineering -- 12.3.Evolutionary Techniques -- 12.4.Heuristics Methods -- 12.5.Hierarchical Decomposition -- 12.6.Superstructure and Multiobjective Optimization -- 12.7.Synthesis of Subsystems -- Problems -- References -- 13.Mass and Energy Integration -- 13.1.Process Integration: Synthesis, Analysis, and Optimization -- 13.2.Energy Integration -- 13.3.Mass Integration -- Problems -- References -- 14.Inherent Safety -- 14.1.Inherent Safety vs. Traditional Process Safety -- 14.2.Inherent Safety and Inherently Safer Design -- 14.3.Inherent Safety in Route Strategy and Process Design -- 14.4.Conclusions on Inherent Safety -- Problems -- References -- 15.Process Intensification -- 15.1.Process Intensification Background -- 15.2.Process Intensification Technologies -- 15.3.Process Intensification Techniques -- 15.4.Perspectives on Process Intensification -- Problems -- References -- pt. IV EXPANDING THE BOUNDARIES -- 16.Life Cycle Inventory and Assessment Concepts -- 16.1.Life Cycle Inventory and Assessment Background -- 16.2.LCI/A Methodology -- 16.3.Interpretation: Making Decisions with LCI/A -- 16.4.Streamlined Life Cycle Assessment -- Problems -- References -- 17.Impacts of Materials and Procurement -- 17.1.Life Cycle Management -- 17.2.Where Chemical Trees and Supply Chains Come From -- 17.3.Green (Sustainable) Procurement -- 17.4.Transportation Impacts -- Problems -- References -- 18.Impacts of Energy Requirements -- 18.1.Where Energy Comes From -- 18.2.Environmental Life Cycle Emissions and Impacts of Energy Generation -- 18.3.From Emissions to Impacts -- 18.4.Energy Requirements for Waste Treatment -- Problems -- References -- 19.Impacts of Waste and Waste Treatment -- 19.1.Environmental Fate and Effects Data -- 19.2.Environmental Fate Information: Physical Properties -- 19.3.Environmental Fate Information: Transformation and Depletion Mechanisms -- 19.4.Environmental Effects Information -- 19.5.Environmental Risk Assessment -- 19.6.Environmental Life Cycle Impacts of Waste Treatment -- Problems -- References -- 20.Total Cost Assessment -- 20.1.Total Cost Assessment Background -- 20.2.Importance of Total Cost Assessment -- 20.3.Relationship Between Life Cycle Inventory/Assessment and Total Cost Assessment -- 20.4.Timing of a Total Cost Assessment -- 20.5.Total Cost Assessment Methodology -- 20.6.Total Cost Assessment in a Green Chemistry Context -- Problems -- References -- pt. V WHAT LIES AHEAD -- 21.Emerging Materials -- 21.1.Emerging Materials Development -- 21.2.Nanomaterials -- 21.3.Bioplastics and Biopolymers -- 21.4.About New Green Materials -- Problems -- References -- 22.Renewable Resources -- 22.1.Why We Need Renewable Resources -- 22.2.Renewable Materials -- 22.3.The Biorefinery -- 22.4.Renewable Energy -- Problems -- References -- 23.Evaluating Technologies -- 23.1.Why We Need to Evaluate Technologies and Processes Comprehensively -- 23.2.Comparing Technologies and Processes -- 23.3.One Way to Compare Technologies -- 23.4.Trade-Offs -- 23.5.Advantages and Limitations of Comparing Technologies -- Problems -- References -- 24.Industrial Ecology -- 24.1.Industrial Ecology Background -- 24.2.Principles and Concepts of Industrial Ecology and Design -- 24.3.Industrial Ecology and Design -- 24.4.Industrial Ecology in Practice -- Problems -- References -- 25.Tying It All Together: Is Sustainability Possible? -- 25.1.Can Green Chemistry and Green Engineering Enable Sustainability? -- 25.2.Sustainability: Culture and Policy -- 25.3.Influencing Sustainability -- 25.4.Moving to Action -- Problems -- References.
標題:
Environmental chemistry - Industrial applications. -
ISBN:
9780470170878 (hbk.) :
Green chemistry and engineering : = a practical design approach /
Jimenez-Gonzalez, Concepcion.
Green chemistry and engineering :
a practical design approach /Concepcion Jimenez-Gonzalez, David J. C. Constable. - Hoboken, NJ :Wiley,c2011. - xiii, 680 p. :ill. ;27 cm.
Includes bibliographical references and indexes.
Machine generated contents note: pt. I GREEEN CHEMISTRY AND GREEN ENGINEERING IN THE MOVEMENT TOWARD SUSTAINABILITY -- 1.Green Chemistry and Engineering in the Context of Sustainability -- 1.1.Why Green Chemistry? -- 1.2.Green Chemistry, Green Engineering, and Sustainability -- 1.3.Until Death Do Us Part: A Marriage of Disciplines -- Problems -- References -- 2.Green Chemistry and Green Engineering Principles -- 2.1.Green Chemistry Principles -- 2.2.Twelve More Green Chemistry Principles -- 2.3.Twelve Principles of Green Engineering -- 2.4.The San Destin Declaration: Principles of Green Engineering -- 2.5.Simplifying the Principles -- Problems -- References -- 3.Starting with the Basics: Integrating Environment, Health, and Safety -- 3.1.Environmental Issues of Importance -- 3.2.Health Issues of Importance -- 3.3.Safety Issues of Importance -- 3.4.Hazard and Risk -- 3.5.Integrated Perspective on Environment, Health, and Safety -- Problems -- References -- 4.How Do We Know It's Green? A Metrics Primer -- 4.1.General Considerations About Green Chemistry and Engineering Metrics -- 4.2.Chemistry Metrics -- 4.3.Process Metrics -- 4.4.Cost Implications and Green Chemistry Metrics -- 4.5.A Final Word on Green Metrics -- Problems -- References -- pt. II THE BEGINNING: DESIGNING GREENER, SAFER CHEMICAL SYNTHESES -- 5.Route and Chemistry Selection -- 5.1.The Challenge of Synthetic Chemistry -- 5.2.Making Molecules -- 5.3.Using Different Chemistries -- 5.4.Route Strategy -- 5.5.Protection-Deprotection -- 5.6.Going from a Route to a Process -- Problems -- References -- 6.Material Selection: Solvents, Catalysts, and Reagents -- 6.1.Solvents and Solvent Selection Strategies -- 6.2.Catalysts and Catalyst Selection Strategies -- 6.3.Other Reagents -- Problems -- References -- 7.Reaction Conditions and Green Chemistry -- 7.1.Stoichiometry -- 7.2.Design of Experiments -- 7.3.Temperature -- 7.4.Solvent Use -- 7.5.Solvents and Energy Use -- 7.6.Reaction and Processing Time -- 7.7.Order and Rate of Reagent Addition -- 7.8.Mixing -- Appendix 7.1 Common Practices in Batch Chemical Processing and Their Green Chemistry Impacts -- Problems -- References -- 8.Bioprocesses -- 8.1.How Biotechnology Has Been Used -- 8.2.Are Bioprocesses Green? -- 8.3.What Is Involved in Bioprocessing -- 8.4.Examples of Products Obtained from Bioprocessing -- Problems -- References -- pt. III FROM THE FLASK TO THE PLANT: DESIGNING GREENER, SAFER, MORE SUSTAINABLE MANUFACTURING PROCESSES -- 9.Mass and Energy Balances -- 9.1.Why We Need Mass Balances, Energy Balances, and Process Flow Diagrams -- 9.2.Types of Processes -- 9.3.Process Flow Diagams -- 9.4.Mass Balances -- 9.5.Energy Balances -- 9.6.Measuring Greenness of a Process Through Energy and Mass Balances -- Problems -- References -- 10.The Scale-up Effect -- 10.1.The Scale-up Problem -- 10.2.Factors Affecting Scale-up -- 10.3.Scale-up Tools -- 10.4.Numbering-up vs. Scaling-up -- Problems -- References -- 11.Reactors and Separations -- 11.1.Reactors and Separations in Green Engineering -- 11.2.Reactors -- 11.3.Separations and Other Unit Operations -- 11.4.Batch vs. Continuous Processes -- 11.5.Does Size Matter? -- Problems -- References -- 12.Process Synthesis -- 12.1.Process Synthesis Background -- 12.2.Process Synthesis Approaches and Green Engineering -- 12.3.Evolutionary Techniques -- 12.4.Heuristics Methods -- 12.5.Hierarchical Decomposition -- 12.6.Superstructure and Multiobjective Optimization -- 12.7.Synthesis of Subsystems -- Problems -- References -- 13.Mass and Energy Integration -- 13.1.Process Integration: Synthesis, Analysis, and Optimization -- 13.2.Energy Integration -- 13.3.Mass Integration -- Problems -- References -- 14.Inherent Safety -- 14.1.Inherent Safety vs. Traditional Process Safety -- 14.2.Inherent Safety and Inherently Safer Design -- 14.3.Inherent Safety in Route Strategy and Process Design -- 14.4.Conclusions on Inherent Safety -- Problems -- References -- 15.Process Intensification -- 15.1.Process Intensification Background -- 15.2.Process Intensification Technologies -- 15.3.Process Intensification Techniques -- 15.4.Perspectives on Process Intensification -- Problems -- References -- pt. IV EXPANDING THE BOUNDARIES -- 16.Life Cycle Inventory and Assessment Concepts -- 16.1.Life Cycle Inventory and Assessment Background -- 16.2.LCI/A Methodology -- 16.3.Interpretation: Making Decisions with LCI/A -- 16.4.Streamlined Life Cycle Assessment -- Problems -- References -- 17.Impacts of Materials and Procurement -- 17.1.Life Cycle Management -- 17.2.Where Chemical Trees and Supply Chains Come From -- 17.3.Green (Sustainable) Procurement -- 17.4.Transportation Impacts -- Problems -- References -- 18.Impacts of Energy Requirements -- 18.1.Where Energy Comes From -- 18.2.Environmental Life Cycle Emissions and Impacts of Energy Generation -- 18.3.From Emissions to Impacts -- 18.4.Energy Requirements for Waste Treatment -- Problems -- References -- 19.Impacts of Waste and Waste Treatment -- 19.1.Environmental Fate and Effects Data -- 19.2.Environmental Fate Information: Physical Properties -- 19.3.Environmental Fate Information: Transformation and Depletion Mechanisms -- 19.4.Environmental Effects Information -- 19.5.Environmental Risk Assessment -- 19.6.Environmental Life Cycle Impacts of Waste Treatment -- Problems -- References -- 20.Total Cost Assessment -- 20.1.Total Cost Assessment Background -- 20.2.Importance of Total Cost Assessment -- 20.3.Relationship Between Life Cycle Inventory/Assessment and Total Cost Assessment -- 20.4.Timing of a Total Cost Assessment -- 20.5.Total Cost Assessment Methodology -- 20.6.Total Cost Assessment in a Green Chemistry Context -- Problems -- References -- pt. V WHAT LIES AHEAD -- 21.Emerging Materials -- 21.1.Emerging Materials Development -- 21.2.Nanomaterials -- 21.3.Bioplastics and Biopolymers -- 21.4.About New Green Materials -- Problems -- References -- 22.Renewable Resources -- 22.1.Why We Need Renewable Resources -- 22.2.Renewable Materials -- 22.3.The Biorefinery -- 22.4.Renewable Energy -- Problems -- References -- 23.Evaluating Technologies -- 23.1.Why We Need to Evaluate Technologies and Processes Comprehensively -- 23.2.Comparing Technologies and Processes -- 23.3.One Way to Compare Technologies -- 23.4.Trade-Offs -- 23.5.Advantages and Limitations of Comparing Technologies -- Problems -- References -- 24.Industrial Ecology -- 24.1.Industrial Ecology Background -- 24.2.Principles and Concepts of Industrial Ecology and Design -- 24.3.Industrial Ecology and Design -- 24.4.Industrial Ecology in Practice -- Problems -- References -- 25.Tying It All Together: Is Sustainability Possible? -- 25.1.Can Green Chemistry and Green Engineering Enable Sustainability? -- 25.2.Sustainability: Culture and Policy -- 25.3.Influencing Sustainability -- 25.4.Moving to Action -- Problems -- References.
This text bridges the divide between bench chemistry, process design, engineering, environment, health, safety and life cycle considerations. The authors use a systems-oriented and integrated approach to evolve green chemistry and green engineering as disciplines in the broader context of sustainability.
ISBN: 9780470170878 (hbk.) :US99.95
LCCN: 2010003431Subjects--Topical Terms:
748256
Environmental chemistry
--Industrial applications.
LC Class. No.: TP155.2.E58 / J56 2011
Dewey Class. No.: 660
Green chemistry and engineering : = a practical design approach /
LDR
:08018cam a2200265 a 4500
001
980673
003
OCoLC
005
20111013075700.0
008
111115s2011 njua b 001 0 eng d
010
$a
2010003431
020
$a
9780470170878 (hbk.) :
$c
US99.95
020
$a
0470170875 (hbk.)
029
1
$a
AU@
$b
000047055136
029
1
$a
HEBIS
$b
262284391
029
1
$a
AU@
$b
000045337603
035
$a
CS-BW-100-N-09
040
$a
DLC
$c
DLC
$d
YDX
$d
YDXCP
$d
CDX
$d
EUM
$d
UPM
049
$a
FISA
050
0 0
$a
TP155.2.E58
$b
J56 2011
082
0 0
$a
660
$2
22
100
1
$a
Jimenez-Gonzalez, Concepcion.
$3
1306603
245
1 0
$a
Green chemistry and engineering :
$b
a practical design approach /
$c
Concepcion Jimenez-Gonzalez, David J. C. Constable.
260
#
$a
Hoboken, NJ :
$b
Wiley,
$c
c2011.
300
$a
xiii, 680 p. :
$b
ill. ;
$c
27 cm.
504
$a
Includes bibliographical references and indexes.
505
0 #
$a
Machine generated contents note: pt. I GREEEN CHEMISTRY AND GREEN ENGINEERING IN THE MOVEMENT TOWARD SUSTAINABILITY -- 1.Green Chemistry and Engineering in the Context of Sustainability -- 1.1.Why Green Chemistry? -- 1.2.Green Chemistry, Green Engineering, and Sustainability -- 1.3.Until Death Do Us Part: A Marriage of Disciplines -- Problems -- References -- 2.Green Chemistry and Green Engineering Principles -- 2.1.Green Chemistry Principles -- 2.2.Twelve More Green Chemistry Principles -- 2.3.Twelve Principles of Green Engineering -- 2.4.The San Destin Declaration: Principles of Green Engineering -- 2.5.Simplifying the Principles -- Problems -- References -- 3.Starting with the Basics: Integrating Environment, Health, and Safety -- 3.1.Environmental Issues of Importance -- 3.2.Health Issues of Importance -- 3.3.Safety Issues of Importance -- 3.4.Hazard and Risk -- 3.5.Integrated Perspective on Environment, Health, and Safety -- Problems -- References -- 4.How Do We Know It's Green? A Metrics Primer -- 4.1.General Considerations About Green Chemistry and Engineering Metrics -- 4.2.Chemistry Metrics -- 4.3.Process Metrics -- 4.4.Cost Implications and Green Chemistry Metrics -- 4.5.A Final Word on Green Metrics -- Problems -- References -- pt. II THE BEGINNING: DESIGNING GREENER, SAFER CHEMICAL SYNTHESES -- 5.Route and Chemistry Selection -- 5.1.The Challenge of Synthetic Chemistry -- 5.2.Making Molecules -- 5.3.Using Different Chemistries -- 5.4.Route Strategy -- 5.5.Protection-Deprotection -- 5.6.Going from a Route to a Process -- Problems -- References -- 6.Material Selection: Solvents, Catalysts, and Reagents -- 6.1.Solvents and Solvent Selection Strategies -- 6.2.Catalysts and Catalyst Selection Strategies -- 6.3.Other Reagents -- Problems -- References -- 7.Reaction Conditions and Green Chemistry -- 7.1.Stoichiometry -- 7.2.Design of Experiments -- 7.3.Temperature -- 7.4.Solvent Use -- 7.5.Solvents and Energy Use -- 7.6.Reaction and Processing Time -- 7.7.Order and Rate of Reagent Addition -- 7.8.Mixing -- Appendix 7.1 Common Practices in Batch Chemical Processing and Their Green Chemistry Impacts -- Problems -- References -- 8.Bioprocesses -- 8.1.How Biotechnology Has Been Used -- 8.2.Are Bioprocesses Green? -- 8.3.What Is Involved in Bioprocessing -- 8.4.Examples of Products Obtained from Bioprocessing -- Problems -- References -- pt. III FROM THE FLASK TO THE PLANT: DESIGNING GREENER, SAFER, MORE SUSTAINABLE MANUFACTURING PROCESSES -- 9.Mass and Energy Balances -- 9.1.Why We Need Mass Balances, Energy Balances, and Process Flow Diagrams -- 9.2.Types of Processes -- 9.3.Process Flow Diagams -- 9.4.Mass Balances -- 9.5.Energy Balances -- 9.6.Measuring Greenness of a Process Through Energy and Mass Balances -- Problems -- References -- 10.The Scale-up Effect -- 10.1.The Scale-up Problem -- 10.2.Factors Affecting Scale-up -- 10.3.Scale-up Tools -- 10.4.Numbering-up vs. Scaling-up -- Problems -- References -- 11.Reactors and Separations -- 11.1.Reactors and Separations in Green Engineering -- 11.2.Reactors -- 11.3.Separations and Other Unit Operations -- 11.4.Batch vs. Continuous Processes -- 11.5.Does Size Matter? -- Problems -- References -- 12.Process Synthesis -- 12.1.Process Synthesis Background -- 12.2.Process Synthesis Approaches and Green Engineering -- 12.3.Evolutionary Techniques -- 12.4.Heuristics Methods -- 12.5.Hierarchical Decomposition -- 12.6.Superstructure and Multiobjective Optimization -- 12.7.Synthesis of Subsystems -- Problems -- References -- 13.Mass and Energy Integration -- 13.1.Process Integration: Synthesis, Analysis, and Optimization -- 13.2.Energy Integration -- 13.3.Mass Integration -- Problems -- References -- 14.Inherent Safety -- 14.1.Inherent Safety vs. Traditional Process Safety -- 14.2.Inherent Safety and Inherently Safer Design -- 14.3.Inherent Safety in Route Strategy and Process Design -- 14.4.Conclusions on Inherent Safety -- Problems -- References -- 15.Process Intensification -- 15.1.Process Intensification Background -- 15.2.Process Intensification Technologies -- 15.3.Process Intensification Techniques -- 15.4.Perspectives on Process Intensification -- Problems -- References -- pt. IV EXPANDING THE BOUNDARIES -- 16.Life Cycle Inventory and Assessment Concepts -- 16.1.Life Cycle Inventory and Assessment Background -- 16.2.LCI/A Methodology -- 16.3.Interpretation: Making Decisions with LCI/A -- 16.4.Streamlined Life Cycle Assessment -- Problems -- References -- 17.Impacts of Materials and Procurement -- 17.1.Life Cycle Management -- 17.2.Where Chemical Trees and Supply Chains Come From -- 17.3.Green (Sustainable) Procurement -- 17.4.Transportation Impacts -- Problems -- References -- 18.Impacts of Energy Requirements -- 18.1.Where Energy Comes From -- 18.2.Environmental Life Cycle Emissions and Impacts of Energy Generation -- 18.3.From Emissions to Impacts -- 18.4.Energy Requirements for Waste Treatment -- Problems -- References -- 19.Impacts of Waste and Waste Treatment -- 19.1.Environmental Fate and Effects Data -- 19.2.Environmental Fate Information: Physical Properties -- 19.3.Environmental Fate Information: Transformation and Depletion Mechanisms -- 19.4.Environmental Effects Information -- 19.5.Environmental Risk Assessment -- 19.6.Environmental Life Cycle Impacts of Waste Treatment -- Problems -- References -- 20.Total Cost Assessment -- 20.1.Total Cost Assessment Background -- 20.2.Importance of Total Cost Assessment -- 20.3.Relationship Between Life Cycle Inventory/Assessment and Total Cost Assessment -- 20.4.Timing of a Total Cost Assessment -- 20.5.Total Cost Assessment Methodology -- 20.6.Total Cost Assessment in a Green Chemistry Context -- Problems -- References -- pt. V WHAT LIES AHEAD -- 21.Emerging Materials -- 21.1.Emerging Materials Development -- 21.2.Nanomaterials -- 21.3.Bioplastics and Biopolymers -- 21.4.About New Green Materials -- Problems -- References -- 22.Renewable Resources -- 22.1.Why We Need Renewable Resources -- 22.2.Renewable Materials -- 22.3.The Biorefinery -- 22.4.Renewable Energy -- Problems -- References -- 23.Evaluating Technologies -- 23.1.Why We Need to Evaluate Technologies and Processes Comprehensively -- 23.2.Comparing Technologies and Processes -- 23.3.One Way to Compare Technologies -- 23.4.Trade-Offs -- 23.5.Advantages and Limitations of Comparing Technologies -- Problems -- References -- 24.Industrial Ecology -- 24.1.Industrial Ecology Background -- 24.2.Principles and Concepts of Industrial Ecology and Design -- 24.3.Industrial Ecology and Design -- 24.4.Industrial Ecology in Practice -- Problems -- References -- 25.Tying It All Together: Is Sustainability Possible? -- 25.1.Can Green Chemistry and Green Engineering Enable Sustainability? -- 25.2.Sustainability: Culture and Policy -- 25.3.Influencing Sustainability -- 25.4.Moving to Action -- Problems -- References.
520
8
$a
This text bridges the divide between bench chemistry, process design, engineering, environment, health, safety and life cycle considerations. The authors use a systems-oriented and integrated approach to evolve green chemistry and green engineering as disciplines in the broader context of sustainability.
650
# 0
$a
Environmental chemistry
$x
Industrial applications.
$3
748256
650
# 0
$a
Sustainable engineering.
$3
1001063
700
1 #
$a
Constable, David J. C.,
$d
1958-
$3
1298964
筆 0 讀者評論
館藏地:
全部
六樓西文書區HC-Z(6F Western Language Books)
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W0066268
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
TP155.2.E58 J56 2011
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入