語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Estimating the mixing proportion in ...
~
Zhang, Xi.
FindBook
Google Book
Amazon
博客來
Estimating the mixing proportion in a semi-parametric mixture model from censored time-to-event data.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Estimating the mixing proportion in a semi-parametric mixture model from censored time-to-event data./
作者:
Zhang, Xi.
面頁冊數:
61 p.
附註:
Adviser: Dan Rabinowitz.
Contained By:
Dissertation Abstracts International67-02B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3203777
ISBN:
9780542524509
Estimating the mixing proportion in a semi-parametric mixture model from censored time-to-event data.
Zhang, Xi.
Estimating the mixing proportion in a semi-parametric mixture model from censored time-to-event data.
- 61 p.
Adviser: Dan Rabinowitz.
Thesis (Ph.D.)--Columbia University, 2006.
In a semi-parametric mixture model H = theta F+(1-theta)G, a sample from the mixture of two unspecified distributions, and the samples from each of the mixing distributions are obtained. The goal here is to develop an approach to an efficient estimate of the mixing proportion theta. The problem is treated with the cases of uncensored and censored data. In both situations, a family of weighted estimating equations is presented, and the asymptotic behavior of the solution is examined. Then the optimal member of the family is derived. It is shown that the solution to the optimal estimating equation achieves the semi-parametric information bound.
ISBN: 9780542524509Subjects--Topical Terms:
517247
Statistics.
Estimating the mixing proportion in a semi-parametric mixture model from censored time-to-event data.
LDR
:01528nam 2200265 a 45
001
968791
005
20110920
008
110921s2006 eng d
020
$a
9780542524509
035
$a
(UnM)AAI3203777
035
$a
AAI3203777
040
$a
UnM
$c
UnM
100
1
$a
Zhang, Xi.
$3
1256056
245
1 0
$a
Estimating the mixing proportion in a semi-parametric mixture model from censored time-to-event data.
300
$a
61 p.
500
$a
Adviser: Dan Rabinowitz.
500
$a
Source: Dissertation Abstracts International, Volume: 67-02, Section: B, page: 0968.
502
$a
Thesis (Ph.D.)--Columbia University, 2006.
520
$a
In a semi-parametric mixture model H = theta F+(1-theta)G, a sample from the mixture of two unspecified distributions, and the samples from each of the mixing distributions are obtained. The goal here is to develop an approach to an efficient estimate of the mixing proportion theta. The problem is treated with the cases of uncensored and censored data. In both situations, a family of weighted estimating equations is presented, and the asymptotic behavior of the solution is examined. Then the optimal member of the family is derived. It is shown that the solution to the optimal estimating equation achieves the semi-parametric information bound.
590
$a
School code: 0054.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2 0
$a
Columbia University.
$3
571054
773
0
$t
Dissertation Abstracts International
$g
67-02B.
790
$a
0054
790
1 0
$a
Rabinowitz, Dan,
$e
advisor
791
$a
Ph.D.
792
$a
2006
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3203777
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9127281
電子資源
11.線上閱覽_V
電子書
EB W9127281
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入