語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Ricci Yang-Mills flow.
~
Streets, Jeffrey D.
FindBook
Google Book
Amazon
博客來
Ricci Yang-Mills flow.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Ricci Yang-Mills flow./
作者:
Streets, Jeffrey D.
面頁冊數:
142 p.
附註:
Adviser: Mark A. Stern.
Contained By:
Dissertation Abstracts International68-02B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3254891
Ricci Yang-Mills flow.
Streets, Jeffrey D.
Ricci Yang-Mills flow.
- 142 p.
Adviser: Mark A. Stern.
Thesis (Ph.D.)--Duke University, 2007.
Let (Mn, g) be a Riemannian manifold. Say K → E → M is a principal K -bundle with connection A. We define a natural evolution equation for the pair (g, A) combining the Ricci flow for g and the Yang-Mills flow for A which we dub Ricci Yang-Mills flow. We show that these equations are, up to diffeomorphism equivalence, the gradient flow equations for a Riemannian functional on M. Associated to this energy functional is an entropy functional which is monotonically increasing in areas close to a developing singularity. This entropy functional is used to prove a non-collapsing theorem for certain solutions to Ricci Yang-Mills flow.Subjects--Topical Terms:
515831
Mathematics.
Ricci Yang-Mills flow.
LDR
:02309nam 2200289 a 45
001
956440
005
20110624
008
110624s2007 ||||||||||||||||| ||eng d
035
$a
(UMI)AAI3254891
035
$a
AAI3254891
040
$a
UMI
$c
UMI
100
1
$a
Streets, Jeffrey D.
$3
1279905
245
1 0
$a
Ricci Yang-Mills flow.
300
$a
142 p.
500
$a
Adviser: Mark A. Stern.
500
$a
Source: Dissertation Abstracts International, Volume: 68-02, Section: B, page: 1015.
502
$a
Thesis (Ph.D.)--Duke University, 2007.
520
$a
Let (Mn, g) be a Riemannian manifold. Say K → E → M is a principal K -bundle with connection A. We define a natural evolution equation for the pair (g, A) combining the Ricci flow for g and the Yang-Mills flow for A which we dub Ricci Yang-Mills flow. We show that these equations are, up to diffeomorphism equivalence, the gradient flow equations for a Riemannian functional on M. Associated to this energy functional is an entropy functional which is monotonically increasing in areas close to a developing singularity. This entropy functional is used to prove a non-collapsing theorem for certain solutions to Ricci Yang-Mills flow.
520
$a
We show that these equations, after an appropriate change of gauge, are equivalent to a strictly parabolic system, and hence prove general unique short-time existence of solutions. Furthermore we prove derivative estimates of Bernstein-Shi type. These can be used to find a complete obstruction to long-time existence, as well as to prove a compactness theorem for Ricci Yang Mills flow solutions.
520
$a
Our main result is a fairly general long-time existence and convergence theorem for volume-normalized solutions to Ricci Yang-Mills flow. The limiting pair (g, A) satisfies equations coupling the Einstein and Yang-Mills conditions on g and A respectively. Roughly these conditions are that the associated curvature F A must be large, and satisfy a certain "stability" condition determined by a quadratic action of FA on symmetric two-tensors.
590
$a
School code: 0066.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Physics, Theory.
$3
1019422
690
$a
0405
690
$a
0753
710
2
$a
Duke University.
$3
569686
773
0
$t
Dissertation Abstracts International
$g
68-02B.
790
$a
0066
790
1 0
$a
Stern, Mark A.,
$e
advisor
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3254891
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9120669
電子資源
11.線上閱覽_V
電子書
EB W9120669
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入