語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Visual object tracking and segmentation.
~
Dong, Lan.
FindBook
Google Book
Amazon
博客來
Visual object tracking and segmentation.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Visual object tracking and segmentation./
作者:
Dong, Lan.
面頁冊數:
174 p.
附註:
Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 6176.
Contained By:
Dissertation Abstracts International68-09B.
標題:
Engineering, Electronics and Electrical. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3281301
ISBN:
9780549229575
Visual object tracking and segmentation.
Dong, Lan.
Visual object tracking and segmentation.
- 174 p.
Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 6176.
Thesis (Ph.D.)--Princeton University, 2007.
Computer vision is concerned with obtaining visual information about the world by computer, and is an important scientific discipline in digital technology. Within this general area, visual surveillance is one of the most active research topics. This thesis presents new algorithms for object tracking and segmentation problems, which constitute the majority of visual surveillance tasks.
ISBN: 9780549229575Subjects--Topical Terms:
626636
Engineering, Electronics and Electrical.
Visual object tracking and segmentation.
LDR
:02875nam 2200265 a 45
001
948618
005
20110524
008
110524s2007 ||||||||||||||||| ||eng d
020
$a
9780549229575
035
$a
(UMI)AAI3281301
035
$a
AAI3281301
040
$a
UMI
$c
UMI
100
1
$a
Dong, Lan.
$3
1243037
245
1 0
$a
Visual object tracking and segmentation.
300
$a
174 p.
500
$a
Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 6176.
502
$a
Thesis (Ph.D.)--Princeton University, 2007.
520
$a
Computer vision is concerned with obtaining visual information about the world by computer, and is an important scientific discipline in digital technology. Within this general area, visual surveillance is one of the most active research topics. This thesis presents new algorithms for object tracking and segmentation problems, which constitute the majority of visual surveillance tasks.
520
$a
We discuss a number of different object tracking algorithms. We first propose a fast tracking algorithm by efficient estimation of the probability distribution of the object states given the measurements. The central idea is to generate a candidate set which is guaranteed with high probability to contain the true state of the object we want to track. We do this by first segmenting the image space through the use of color histograms. We show that our method reduces the computational load while achieving the same optimal solution as particle filters. We then discuss tracking algorithms in compressed video. We use Motion Vectors (MV) and DCT coefficients available in MPEG-2 video for robust tracking. The robustness lies in two aspects: we try to accurately estimate the motion field by MV together with residual, spatial and textural confidence measures; we develop a mechanism to automatically detect object change and use DCT-based I frame tracking to relocate the object.
520
$a
In the last part of this thesis, we discuss the crowd segmentation problem which is a preliminary step for object tracking. The goal of crowd segmentation is to estimate the number of humans and their positions from background differencing images obtained from a single camera. In contrast to complex model-based algorithms, we formulate the segmentation as an example-based problem. We build up mappings between various configurations of humans with their projected features and use locally weighted regression to interpolate the configuration of the input from best matches. We also combine our method with the popular "Markov Chain Monte Carlo" (MCMC) search and show that we can achieve improvement over MCMC search performed alone.
590
$a
School code: 0181.
650
4
$a
Engineering, Electronics and Electrical.
$3
626636
690
$a
0544
710
2
$a
Princeton University.
$3
645579
773
0
$t
Dissertation Abstracts International
$g
68-09B.
790
$a
0181
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3281301
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9116344
電子資源
11.線上閱覽_V
電子書
EB W9116344
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入