語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Text mining the biomedical literatur...
~
Tanabe, Lorraine Kim.
FindBook
Google Book
Amazon
博客來
Text mining the biomedical literature for genetic knowledge.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Text mining the biomedical literature for genetic knowledge./
作者:
Tanabe, Lorraine Kim.
面頁冊數:
136 p.
附註:
Director: Lawrence Hunter.
Contained By:
Dissertation Abstracts International64-02B.
標題:
Biology, Genetics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3079362
Text mining the biomedical literature for genetic knowledge.
Tanabe, Lorraine Kim.
Text mining the biomedical literature for genetic knowledge.
- 136 p.
Director: Lawrence Hunter.
Thesis (Ph.D.)--George Mason University, 2003.
Knowledge about genes and gene products continues to grow exponentially in electronic textual databases. Due to the complexity and homogeneity of the biomedical domain, synthesis of all of the available information about thousands of genes and proteins is a prohibitive task. Text mining can simplify this scenario by aiding researchers in finding relevant facts in vast biomedical textual databases. This thesis explores how natural language processing (NLP) and machine learning methods can be used to represent, filter, extract and infer genetic knowledge in biomedical text.Subjects--Topical Terms:
1017730
Biology, Genetics.
Text mining the biomedical literature for genetic knowledge.
LDR
:01414nam 2200265 a 45
001
937541
005
20110511
008
110511s2003 eng d
035
$a
(UnM)AAI3079362
035
$a
AAI3079362
040
$a
UnM
$c
UnM
100
1
$a
Tanabe, Lorraine Kim.
$3
1261402
245
1 0
$a
Text mining the biomedical literature for genetic knowledge.
300
$a
136 p.
500
$a
Director: Lawrence Hunter.
500
$a
Source: Dissertation Abstracts International, Volume: 64-02, Section: B, page: 0817.
502
$a
Thesis (Ph.D.)--George Mason University, 2003.
520
$a
Knowledge about genes and gene products continues to grow exponentially in electronic textual databases. Due to the complexity and homogeneity of the biomedical domain, synthesis of all of the available information about thousands of genes and proteins is a prohibitive task. Text mining can simplify this scenario by aiding researchers in finding relevant facts in vast biomedical textual databases. This thesis explores how natural language processing (NLP) and machine learning methods can be used to represent, filter, extract and infer genetic knowledge in biomedical text.
590
$a
School code: 0883.
650
4
$a
Biology, Genetics.
$3
1017730
650
4
$a
Computer Science.
$3
626642
690
$a
0369
690
$a
0984
710
2 0
$a
George Mason University.
$3
1019450
773
0
$t
Dissertation Abstracts International
$g
64-02B.
790
$a
0883
790
1 0
$a
Hunter, Lawrence,
$e
advisor
791
$a
Ph.D.
792
$a
2003
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3079362
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9108028
電子資源
11.線上閱覽_V
電子書
EB W9108028
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入