語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The small-sample distribution of par...
~
Das, Debabrata.
FindBook
Google Book
Amazon
博客來
The small-sample distribution of parameter estimators in a spatial ARAR(1,1) model: A Monte Carlo study.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The small-sample distribution of parameter estimators in a spatial ARAR(1,1) model: A Monte Carlo study./
作者:
Das, Debabrata.
面頁冊數:
326 p.
附註:
Co-Chairs: Harry Kelejian; Ingmar Prucha.
Contained By:
Dissertation Abstracts International61-04B.
標題:
Economics, General. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9967888
ISBN:
0599725451
The small-sample distribution of parameter estimators in a spatial ARAR(1,1) model: A Monte Carlo study.
Das, Debabrata.
The small-sample distribution of parameter estimators in a spatial ARAR(1,1) model: A Monte Carlo study.
- 326 p.
Co-Chairs: Harry Kelejian; Ingmar Prucha.
Thesis (Ph.D.)--University of Maryland College Park, 2000.
This thesis studies the small sample distribution of the (quasi) ML estimator and the FGS2SLS estimator of parameters in a spatial ARAR(1,1) model. In order to compare the small sample distribution of these estimators a Monte Carlo study is performed. The FGS2SLS estimator was proposed by Kelejian and Prucha (1998) as an alternative to the ML estimator because the FGS2SLS is consistent and asymptotically normal and computationally simple. However, from a practical point of view, one needs to explore the small sample distribution of this estimator. Given the small sample efficiency of ML estimators in a number of econometric models, one may expect the QML estimator to be reasonably precise in the model we have considered. The results from the Monte Carlo study suggest that the small sample distribution of the FGS2SLS estimator is very similar to that of the QML estimator. Therefore, the FGS2SLS estimator not only has a major computational advantage over the QML estimator, but also has a distribution similar to QML estimator in small samples.
ISBN: 0599725451Subjects--Topical Terms:
1017424
Economics, General.
The small-sample distribution of parameter estimators in a spatial ARAR(1,1) model: A Monte Carlo study.
LDR
:02032nam 2200289 a 45
001
929286
005
20110427
008
110427s2000 eng d
020
$a
0599725451
035
$a
(UnM)AAI9967888
035
$a
AAI9967888
040
$a
UnM
$c
UnM
100
1
$a
Das, Debabrata.
$3
1252770
245
1 0
$a
The small-sample distribution of parameter estimators in a spatial ARAR(1,1) model: A Monte Carlo study.
300
$a
326 p.
500
$a
Co-Chairs: Harry Kelejian; Ingmar Prucha.
500
$a
Source: Dissertation Abstracts International, Volume: 61-04, Section: B, page: 2020.
502
$a
Thesis (Ph.D.)--University of Maryland College Park, 2000.
520
$a
This thesis studies the small sample distribution of the (quasi) ML estimator and the FGS2SLS estimator of parameters in a spatial ARAR(1,1) model. In order to compare the small sample distribution of these estimators a Monte Carlo study is performed. The FGS2SLS estimator was proposed by Kelejian and Prucha (1998) as an alternative to the ML estimator because the FGS2SLS is consistent and asymptotically normal and computationally simple. However, from a practical point of view, one needs to explore the small sample distribution of this estimator. Given the small sample efficiency of ML estimators in a number of econometric models, one may expect the QML estimator to be reasonably precise in the model we have considered. The results from the Monte Carlo study suggest that the small sample distribution of the FGS2SLS estimator is very similar to that of the QML estimator. Therefore, the FGS2SLS estimator not only has a major computational advantage over the QML estimator, but also has a distribution similar to QML estimator in small samples.
590
$a
School code: 0117.
650
4
$a
Economics, General.
$3
1017424
650
4
$a
Statistics.
$3
517247
690
$a
0463
690
$a
0501
710
2 0
$a
University of Maryland College Park.
$3
1249734
773
0
$t
Dissertation Abstracts International
$g
61-04B.
790
$a
0117
790
1 0
$a
Kelejian, Harry,
$e
advisor
790
1 0
$a
Prucha, Ingmar,
$e
advisor
791
$a
Ph.D.
792
$a
2000
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9967888
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9100590
電子資源
11.線上閱覽_V
電子書
EB W9100590
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入