Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Testing and simulation of composite ...
~
Dang, Xinglai.
Linked to FindBook
Google Book
Amazon
博客來
Testing and simulation of composite laminates under impact loading.
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Testing and simulation of composite laminates under impact loading./
Author:
Dang, Xinglai.
Description:
180 p.
Notes:
Adviser: Dahsin Liu.
Contained By:
Dissertation Abstracts International61-08B.
Subject:
Applied Mechanics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9985375
ISBN:
0599916389
Testing and simulation of composite laminates under impact loading.
Dang, Xinglai.
Testing and simulation of composite laminates under impact loading.
- 180 p.
Adviser: Dahsin Liu.
Thesis (Ph.D.)--Michigan State University, 2000.
Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient than improving assembling stiffness in raising perforation resistance. As a first step to simulate composite response to impact loading, LS-DYNA3D was used for numerical analysis. However, due to its inability to describe interlaminar stresses, no delamination simulation could be achieved. As delamination played a very important role in damage process, a computational scheme capable of identifying interlaminar stresses and considering both numerical accuracy and computational efficiency was required for impact simulation. Accounting for interlaminar shear stress continuity and having degrees of freedom independent of layer number, a laminate theory named Generalized Zigzag Theory was formulated into a finite element subroutine and integrated into ABAQUS code. The computational scheme was able to present reasonable interlaminar shear stresses via an updated Lagragian algorithm. Combining the calculated interlaminar stresses with a delamination failure criterion, the computer program was able to predict the response of composite laminates up to the onset of delamination. Further computational simulation involving all damage modes should be considered in future studies.
ISBN: 0599916389Subjects--Topical Terms:
1018410
Applied Mechanics.
Testing and simulation of composite laminates under impact loading.
LDR
:04064nam 2200289 a 45
001
926659
005
20110422
008
110422s2000 eng d
020
$a
0599916389
035
$a
(UnM)AAI9985375
035
$a
AAI9985375
040
$a
UnM
$c
UnM
100
1
$a
Dang, Xinglai.
$3
1250242
245
1 0
$a
Testing and simulation of composite laminates under impact loading.
300
$a
180 p.
500
$a
Adviser: Dahsin Liu.
500
$a
Source: Dissertation Abstracts International, Volume: 61-08, Section: B, page: 4343.
502
$a
Thesis (Ph.D.)--Michigan State University, 2000.
520
$a
Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient than improving assembling stiffness in raising perforation resistance. As a first step to simulate composite response to impact loading, LS-DYNA3D was used for numerical analysis. However, due to its inability to describe interlaminar stresses, no delamination simulation could be achieved. As delamination played a very important role in damage process, a computational scheme capable of identifying interlaminar stresses and considering both numerical accuracy and computational efficiency was required for impact simulation. Accounting for interlaminar shear stress continuity and having degrees of freedom independent of layer number, a laminate theory named Generalized Zigzag Theory was formulated into a finite element subroutine and integrated into ABAQUS code. The computational scheme was able to present reasonable interlaminar shear stresses via an updated Lagragian algorithm. Combining the calculated interlaminar stresses with a delamination failure criterion, the computer program was able to predict the response of composite laminates up to the onset of delamination. Further computational simulation involving all damage modes should be considered in future studies.
590
$a
School code: 0128.
650
4
$a
Applied Mechanics.
$3
1018410
650
4
$a
Engineering, Materials Science.
$3
1017759
650
4
$a
Engineering, Mechanical.
$3
783786
690
$a
0346
690
$a
0548
690
$a
0794
710
2 0
$a
Michigan State University.
$3
676168
773
0
$t
Dissertation Abstracts International
$g
61-08B.
790
$a
0128
790
1 0
$a
Liu, Dahsin,
$e
advisor
791
$a
Ph.D.
792
$a
2000
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9985375
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9098617
電子資源
11.線上閱覽_V
電子書
EB W9098617
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login