Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Estimation and control of the discre...
~
Universidad Politecnica de Valencia (Spain).
Linked to FindBook
Google Book
Amazon
博客來
Estimation and control of the discretization error in thehp finite element method (Spanish text).
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Estimation and control of the discretization error in thehp finite element method (Spanish text)./
Author:
Tarancon Caro, Jose Enrique.
Description:
198 p.
Notes:
Director: Francisco Javier Fuenmayor Fernandez.
Contained By:
Dissertation Abstracts International63-01B.
Subject:
Applied Mechanics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3041280
ISBN:
0493546154
Estimation and control of the discretization error in thehp finite element method (Spanish text).
Tarancon Caro, Jose Enrique.
Estimation and control of the discretization error in thehp finite element method (Spanish text).
- 198 p.
Director: Francisco Javier Fuenmayor Fernandez.
Thesis (Dr.)--Universidad Politecnica de Valencia (Spain), 2002.
The proposed <italic>hp</italic>-refinement procedure uses the <italic> a priori</italic> convergence law of the error to optimize the discretization by distributing the error uniformly.
ISBN: 0493546154Subjects--Topical Terms:
1018410
Applied Mechanics.
Estimation and control of the discretization error in thehp finite element method (Spanish text).
LDR
:03501nam 2200361 a 45
001
926518
005
20110422
008
110422s2002 spa d
020
$a
0493546154
035
$a
(UnM)AAI3041280
035
$a
AAI3041280
040
$a
UnM
$c
UnM
100
1
$a
Tarancon Caro, Jose Enrique.
$3
1250104
245
1 0
$a
Estimation and control of the discretization error in thehp finite element method (Spanish text).
300
$a
198 p.
500
$a
Director: Francisco Javier Fuenmayor Fernandez.
500
$a
Source: Dissertation Abstracts International, Volume: 63-01, Section: B, page: 0339.
502
$a
Thesis (Dr.)--Universidad Politecnica de Valencia (Spain), 2002.
520
$a
The proposed <italic>hp</italic>-refinement procedure uses the <italic> a priori</italic> convergence law of the error to optimize the discretization by distributing the error uniformly.
520
$a
The proposed error estimator is an extension of that of Zienkiewicz-Zhu with a local correction, which depends on the polynomial degree of the elements. The improved stress field is obtained by solving complementary problem in each element.
520
$a
The more efficient way to control the discretization error of a finite element solution, from the point of view of the number of degrees of freedom needed to reach the desired accuracy, is an adaptive <italic>hp</italic>-refinement. This type of refinement strategy combines the capacity of isolation of singular points in the <italic>h</italic>-method, with the greater convergence rate of the error that presents the <italic>p</italic>-method in domains where the solution is smooth. The result is an exponential convergence of the error for any problem if the mesh is conveniently optimized.
520
$a
However, few commercial codes offer capacity for adaptive <italic>p</italic>-refinements and practically none for adaptive <italic>hp</italic>-refinements. The causes can be the great difficulty to estimate a reliable discretization error in the <italic>p</italic>-method, especially at local level, and the complexity associated with any <italic>hp</italic>-refinement procedure, mainly due to the data structure that is needed.
520
$a
The existent techniques are revised in this Thesis with the purpose of improving the estimate and control of the error in the <italic>hp</italic>-version of the FEM. An error estimate and an adaptive <italic>hp</italic>-refinement procedure for linear elastostatics problems in bi-dimensional domains are proposed. The proposed methods have a low computational cost and they do not require several analyses to use extrapolation techniques, neither estimates of the singularity intensity or the convergence rate.
520
$a
The numerical verifications performed with different examples show that the error estimator presents good reliability at global level. It is also sufficiently reliable at local level if it is combined with the proposed refinement procedure. The <italic>hp</italic>-refinement strategy considerably reduces the number of degrees of freedom required to control the error in comparison with adaptive <italic>h</italic>- and <italic>p</italic>-refinements.
590
$a
School code: 1378.
650
4
$a
Applied Mechanics.
$3
1018410
650
4
$a
Engineering, Mechanical.
$3
783786
650
4
$a
Mathematics.
$3
515831
690
$a
0346
690
$a
0405
690
$a
0548
710
2 0
$a
Universidad Politecnica de Valencia (Spain).
$3
1026748
773
0
$t
Dissertation Abstracts International
$g
63-01B.
790
$a
1378
790
1 0
$a
Fuenmayor Fernandez, Francisco Javier,
$e
advisor
791
$a
Dr.
792
$a
2002
793
$a
Spanish
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3041280
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9098477
電子資源
11.線上閱覽_V
電子書
EB W9098477
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login