語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Neural enhancement for multiobjectiv...
~
Auburn University.
FindBook
Google Book
Amazon
博客來
Neural enhancement for multiobjective optimization.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Neural enhancement for multiobjective optimization./
作者:
Garrett, Aaron.
面頁冊數:
219 p.
附註:
Adviser: Gerry Dozier.
Contained By:
Dissertation Abstracts International69-06B.
標題:
Computer Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3317313
ISBN:
9780549668107
Neural enhancement for multiobjective optimization.
Garrett, Aaron.
Neural enhancement for multiobjective optimization.
- 219 p.
Adviser: Gerry Dozier.
Thesis (Ph.D.)--Auburn University, 2008.
In this work, a neural network approach is applied to multiobjective optimization problems in order to expand the set of optimal solutions. The network is trained using results obtained from existing evolutionary multiobjective optimization approaches. The network is then evaluated based on its performance against those same approaches when given more processing time. The results are collected from a set of well-known benchmark multiobjective problems, and its performance is evaluated using various indicators from the multiobjective optimization literature.
ISBN: 9780549668107Subjects--Topical Terms:
626642
Computer Science.
Neural enhancement for multiobjective optimization.
LDR
:01952nmm 2200277 a 45
001
890856
005
20101105
008
101105s2008 ||||||||||||||||| ||eng d
020
$a
9780549668107
035
$a
(UMI)AAI3317313
035
$a
AAI3317313
040
$a
UMI
$c
UMI
100
1
$a
Garrett, Aaron.
$3
724236
245
1 0
$a
Neural enhancement for multiobjective optimization.
300
$a
219 p.
500
$a
Adviser: Gerry Dozier.
500
$a
Source: Dissertation Abstracts International, Volume: 69-06, Section: B, page: 3654.
502
$a
Thesis (Ph.D.)--Auburn University, 2008.
520
$a
In this work, a neural network approach is applied to multiobjective optimization problems in order to expand the set of optimal solutions. The network is trained using results obtained from existing evolutionary multiobjective optimization approaches. The network is then evaluated based on its performance against those same approaches when given more processing time. The results are collected from a set of well-known benchmark multiobjective problems, and its performance is evaluated using various indicators from the multiobjective optimization literature.
520
$a
Preliminary experiments reveal the viability of this approach for expanding the set of solutions to multiobjective problems. Further experiments prove that it is possible to train the neural network in a reasonable time using heuristic methods. The results of this training approach are shown to be very competitive with the underlying evolutionary multiobjective optimization approach that was used to produce the training set. Additional experiments reveal the applicability of this approach across existing multiobjective optimization approaches.
590
$a
School code: 0012.
650
4
$a
Computer Science.
$3
626642
690
$a
0984
710
2
$a
Auburn University.
$3
1020457
773
0
$t
Dissertation Abstracts International
$g
69-06B.
790
$a
0012
790
1 0
$a
Dozier, Gerry,
$e
advisor
791
$a
Ph.D.
792
$a
2008
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3317313
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9082984
電子資源
11.線上閱覽_V
電子書
EB W9082984
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入