語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Linking detritus and primary produce...
~
University of Maryland, College Park., Entomology.
FindBook
Google Book
Amazon
博客來
Linking detritus and primary producer based communities.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Linking detritus and primary producer based communities./
作者:
Hines, Jessica.
面頁冊數:
140 p.
附註:
Adviser: Robert F. Denno.
Contained By:
Dissertation Abstracts International69-06B.
標題:
Biology, Ecology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoeng/servlet/advanced?query=3307788
ISBN:
9780549571957
Linking detritus and primary producer based communities.
Hines, Jessica.
Linking detritus and primary producer based communities.
- 140 p.
Adviser: Robert F. Denno.
Thesis (Ph.D.)--University of Maryland, College Park, 2008.
Terrestrial food-web theory has been developed largely by examining species interactions in primary producer food webs. However, the decomposer subsystem can have strong influences on aboveground communities and ecosystem functioning. Here I examine, at several spatial scales, the complexity of terrestrial food-web interactions by considering interactions between species in detritivore and primary-producer food webs. I focused on Spartina alterniflora marshes and interactions among the numerically dominant herbivore Prokelisia dolus, its major spider predator Pardosa littoralis , and several detritivores (Littorophiloscia vittata, Orchestia grillus, Melampus bidentatus and Littoraria irrorata). I found that predator-detritivore interactions have weak indirect effects on plant growth and decomposition (Chapter 1). Furthermore, by serving as alternative prey, detritivores can influence the strength of predator-herbivore interactions. However, the strength of predator-herbivore-detritivore interactions was species-specific and depended on habitat structure (leaf litter - Chapter 1) and detritivore identity (Chapter 2). Although detritivore species are often functionally redundant in soil communities, changes in detritivore species composition can have divergent influences on aboveground predator-herbivore interactions (Chapter 2). Whereas some detritivores (Littorophiloscia vittatta) promote herbivore and predator survival, other detritivores (Littoraria irroratta) reduce predator and herbivore densities. Moreover, the geographic distribution of detritivores influences the relative strength of predator-herbivore interactions across broader spatial scales (Chapter 3). I found a shift in the relative abundance of dominant detritivore, herbivore, and predator species across a 1660 km latitudinal gradient. Detritivorous Littoraria snails that abound on low-latitude marshes modify Spartina vegetation structure and create an unfavorable habitat for Pardosa spiders. Pardosa exert stronger predation pressure on Prokelisia planthoppers on high-latitude marshes where spiders are abundant. Changes in global carbon cycles may influence the strength of linkages between primary production and decomposition food webs. I examined how changes in the detritivore food chain influenced the growth of two plant species (Scirpus olneyi and Spartina patens) under elevated and ambient CO2 conditions. I found limited and species-specific support for the increased importance of the decomposition pathway under elevated CO2 conditions. Overall, detritivores modified predator-herbivore interactions, live plant growth, and decomposition. The strength of these interactions changed with the composition of the detritivore community, latitude, and atmospheric CO 2 conditions.
ISBN: 9780549571957Subjects--Topical Terms:
1017726
Biology, Ecology.
Linking detritus and primary producer based communities.
LDR
:03666nam 2200277 a 45
001
857591
005
20100712
008
100712s2008 ||||||||||||||||| ||eng d
020
$a
9780549571957
035
$a
(UMI)AAI3307788
035
$a
AAI3307788
040
$a
UMI
$c
UMI
100
1
$a
Hines, Jessica.
$3
1024549
245
1 0
$a
Linking detritus and primary producer based communities.
300
$a
140 p.
500
$a
Adviser: Robert F. Denno.
500
$a
Source: Dissertation Abstracts International, Volume: 69-06, Section: B, page: 3369.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2008.
520
$a
Terrestrial food-web theory has been developed largely by examining species interactions in primary producer food webs. However, the decomposer subsystem can have strong influences on aboveground communities and ecosystem functioning. Here I examine, at several spatial scales, the complexity of terrestrial food-web interactions by considering interactions between species in detritivore and primary-producer food webs. I focused on Spartina alterniflora marshes and interactions among the numerically dominant herbivore Prokelisia dolus, its major spider predator Pardosa littoralis , and several detritivores (Littorophiloscia vittata, Orchestia grillus, Melampus bidentatus and Littoraria irrorata). I found that predator-detritivore interactions have weak indirect effects on plant growth and decomposition (Chapter 1). Furthermore, by serving as alternative prey, detritivores can influence the strength of predator-herbivore interactions. However, the strength of predator-herbivore-detritivore interactions was species-specific and depended on habitat structure (leaf litter - Chapter 1) and detritivore identity (Chapter 2). Although detritivore species are often functionally redundant in soil communities, changes in detritivore species composition can have divergent influences on aboveground predator-herbivore interactions (Chapter 2). Whereas some detritivores (Littorophiloscia vittatta) promote herbivore and predator survival, other detritivores (Littoraria irroratta) reduce predator and herbivore densities. Moreover, the geographic distribution of detritivores influences the relative strength of predator-herbivore interactions across broader spatial scales (Chapter 3). I found a shift in the relative abundance of dominant detritivore, herbivore, and predator species across a 1660 km latitudinal gradient. Detritivorous Littoraria snails that abound on low-latitude marshes modify Spartina vegetation structure and create an unfavorable habitat for Pardosa spiders. Pardosa exert stronger predation pressure on Prokelisia planthoppers on high-latitude marshes where spiders are abundant. Changes in global carbon cycles may influence the strength of linkages between primary production and decomposition food webs. I examined how changes in the detritivore food chain influenced the growth of two plant species (Scirpus olneyi and Spartina patens) under elevated and ambient CO2 conditions. I found limited and species-specific support for the increased importance of the decomposition pathway under elevated CO2 conditions. Overall, detritivores modified predator-herbivore interactions, live plant growth, and decomposition. The strength of these interactions changed with the composition of the detritivore community, latitude, and atmospheric CO 2 conditions.
590
$a
School code: 0117.
650
4
$a
Biology, Ecology.
$3
1017726
650
4
$a
Biology, Entomology.
$3
1018619
690
$a
0329
690
$a
0353
710
2
$a
University of Maryland, College Park.
$b
Entomology.
$3
1018794
773
0
$t
Dissertation Abstracts International
$g
69-06B.
790
$a
0117
790
1 0
$a
Denno, Robert F.,
$e
advisor
791
$a
Ph.D.
792
$a
2008
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoeng/servlet/advanced?query=3307788
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9072470
電子資源
11.線上閱覽_V
電子書
EB W9072470
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入