Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Rank-based methods for statistical a...
~
The Johns Hopkins University.
Linked to FindBook
Google Book
Amazon
博客來
Rank-based methods for statistical analysis of gene expression microarray data.
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Rank-based methods for statistical analysis of gene expression microarray data./
Author:
Lin, Xue.
Description:
115 p.
Notes:
Advisers: Donald Geman; Daniel Q. Nainman.
Contained By:
Dissertation Abstracts International69-12B.
Subject:
Biology, Biostatistics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoeng/servlet/advanced?query=3339873
ISBN:
9780549938460
Rank-based methods for statistical analysis of gene expression microarray data.
Lin, Xue.
Rank-based methods for statistical analysis of gene expression microarray data.
- 115 p.
Advisers: Donald Geman; Daniel Q. Nainman.
Thesis (Ph.D.)--The Johns Hopkins University, 2009.
Gene expression microarray data have great potential in helping researchers to understand the biological mechanisms of disease and hence their diagnosis. How to utilize and analyze these large-scale data to extract useful information is the major challenge of bioinformatics field. In this dissertation, we propose a rank-based framework for the statistical analysis of expression microarray data. We first explore the rank-invariant property of various microarray preprocessing methods, then propose a rank-based classifier called Top-scoring Triplet (TST), and finally we present a maximum entropy model of distribution on ranks.
ISBN: 9780549938460Subjects--Topical Terms:
1018416
Biology, Biostatistics.
Rank-based methods for statistical analysis of gene expression microarray data.
LDR
:01579nam 2200289 a 45
001
854522
005
20100706
008
100706s2009 ||||||||||||||||| ||eng d
020
$a
9780549938460
035
$a
(UMI)AAI3339873
035
$a
AAI3339873
040
$a
UMI
$c
UMI
100
1
$a
Lin, Xue.
$3
1020918
245
1 0
$a
Rank-based methods for statistical analysis of gene expression microarray data.
300
$a
115 p.
500
$a
Advisers: Donald Geman; Daniel Q. Nainman.
500
$a
Source: Dissertation Abstracts International, Volume: 69-12, Section: B, page: 7593.
502
$a
Thesis (Ph.D.)--The Johns Hopkins University, 2009.
520
$a
Gene expression microarray data have great potential in helping researchers to understand the biological mechanisms of disease and hence their diagnosis. How to utilize and analyze these large-scale data to extract useful information is the major challenge of bioinformatics field. In this dissertation, we propose a rank-based framework for the statistical analysis of expression microarray data. We first explore the rank-invariant property of various microarray preprocessing methods, then propose a rank-based classifier called Top-scoring Triplet (TST), and finally we present a maximum entropy model of distribution on ranks.
590
$a
School code: 0098.
650
4
$a
Biology, Biostatistics.
$3
1018416
650
4
$a
Statistics.
$3
517247
690
$a
0308
690
$a
0463
710
2
$a
The Johns Hopkins University.
$3
1017431
773
0
$t
Dissertation Abstracts International
$g
69-12B.
790
$a
0098
790
1 0
$a
Geman, Donald,
$e
advisor
790
1 0
$a
Nainman, Daniel Q.,
$e
advisor
791
$a
Ph.D.
792
$a
2009
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoeng/servlet/advanced?query=3339873
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9070430
電子資源
11.線上閱覽_V
電子書
EB W9070430
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login