語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Artificial neural networks to detect...
~
Mississippi State University., Geosciences.
FindBook
Google Book
Amazon
博客來
Artificial neural networks to detect forest fire prone areas in the Southeast Fire District of Mississippi.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Artificial neural networks to detect forest fire prone areas in the Southeast Fire District of Mississippi./
作者:
Tiruveedhula, Mohan P.
面頁冊數:
100 p.
附註:
Adviser: William H. Cooke, III.
Contained By:
Masters Abstracts International46-06.
標題:
Artificial Intelligence. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1453361
ISBN:
9780549557340
Artificial neural networks to detect forest fire prone areas in the Southeast Fire District of Mississippi.
Tiruveedhula, Mohan P.
Artificial neural networks to detect forest fire prone areas in the Southeast Fire District of Mississippi.
- 100 p.
Adviser: William H. Cooke, III.
Thesis (M.S.)--Mississippi State University, 2008.
An analysis of the fire occurrences parameters is essential to save human lives, property, timber resources and conservation of biodiversity. Data conversion formats such as raster to ASCII facilitate the integration of various GIS software's in the context of RS and GIS modeling. This research explores fire occurrences in relation to human interaction, fuel density interaction, euclidean distance from the perennial streams and slope using artificial neural networks. The human interaction (ignition source) and density of fuels is assessed by Newton's Gravitational theory. Euclidean distance to perennial streams and slope that do posses a significant role were derived using GIS tools.
ISBN: 9780549557340Subjects--Topical Terms:
769149
Artificial Intelligence.
Artificial neural networks to detect forest fire prone areas in the Southeast Fire District of Mississippi.
LDR
:01952nam 2200301 a 45
001
852604
005
20100630
008
100630s2008 ||||||||||||||||| ||eng d
020
$a
9780549557340
035
$a
(UMI)AAI1453361
035
$a
AAI1453361
040
$a
UMI
$c
UMI
100
1
$a
Tiruveedhula, Mohan P.
$3
1018557
245
1 0
$a
Artificial neural networks to detect forest fire prone areas in the Southeast Fire District of Mississippi.
300
$a
100 p.
500
$a
Adviser: William H. Cooke, III.
500
$a
Source: Masters Abstracts International, Volume: 46-06, page: 3423.
502
$a
Thesis (M.S.)--Mississippi State University, 2008.
520
$a
An analysis of the fire occurrences parameters is essential to save human lives, property, timber resources and conservation of biodiversity. Data conversion formats such as raster to ASCII facilitate the integration of various GIS software's in the context of RS and GIS modeling. This research explores fire occurrences in relation to human interaction, fuel density interaction, euclidean distance from the perennial streams and slope using artificial neural networks. The human interaction (ignition source) and density of fuels is assessed by Newton's Gravitational theory. Euclidean distance to perennial streams and slope that do posses a significant role were derived using GIS tools.
520
$a
All the four non linear predictor variables were modeled using the inductive nature of neural networks. The Self organizing feature map (SOM) utilized for fire size risk classification produced an overall classification accuracy of 62% and an overall kappa coefficient of 0.52 that is moderate (fair) for annual fires.
590
$a
School code: 0132.
650
4
$a
Artificial Intelligence.
$3
769149
650
4
$a
Geotechnology.
$3
1018558
650
4
$a
Remote Sensing.
$3
1018559
690
$a
0428
690
$a
0799
690
$a
0800
710
2
$a
Mississippi State University.
$b
Geosciences.
$3
1018556
773
0
$t
Masters Abstracts International
$g
46-06.
790
$a
0132
790
1 0
$a
Cooke, William H., III,
$e
advisor
791
$a
M.S.
792
$a
2008
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1453361
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9069228
電子資源
11.線上閱覽_V
電子書
EB W9069228
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入