語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Transforming Learning & Development ...
~
Reitgruber, Tanja.
FindBook
Google Book
Amazon
博客來
Transforming Learning & Development : The Impact of Artificial Intelligence and Automation on Employee Motivation to Learn.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Transforming Learning & Development : The Impact of Artificial Intelligence and Automation on Employee Motivation to Learn./
作者:
Reitgruber, Tanja.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
112 p.
附註:
Source: Masters Abstracts International, Volume: 86-03.
Contained By:
Masters Abstracts International86-03.
標題:
Online instruction. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31368459
ISBN:
9798384276715
Transforming Learning & Development : The Impact of Artificial Intelligence and Automation on Employee Motivation to Learn.
Reitgruber, Tanja.
Transforming Learning & Development : The Impact of Artificial Intelligence and Automation on Employee Motivation to Learn.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 112 p.
Source: Masters Abstracts International, Volume: 86-03.
Thesis (M.M.)--Universidade Catolica Portuguesa (Portugal), 2023.
Technological advancements have transformed employee learning and development (L&D) from one-size-fits-all approaches to personalized initiatives. Given AI's potential to learn and adapt to individuals' demands, researchers and practitioners have started investigating AI applications in L&D. However, whether employees prefer AI-guided learning and whether it actually drives motivation to learn remains an empirical question. Thus, this research aims to investigate the impact of AI-guided L&D compared to simple automation-based L&D on employee motivation to learn, drawing on the Self-determination Theory (SDT) and the Unified Theory of Acceptance and Use of Technology (UTAUT). The proposed model was tested using a PLS-SEM analysis with 144 participants in an experimental survey. The results revealed that AI in L&D increases motivation to learn more than simple automation. However, this effect is fully mediated by the increase in perceived competence due to AI, emphasizing the importance of providing customized trainings tailored to employees' learning styles and skills, along with consistent feedback, to foster perceived competence. Furthermore, the study demonstrates that motivation to learn significantly predicts individuals' behavioural intention to use a L&D system. Specifically, AI-guided L&D, promoting competence, generates higher motivation to learn, leading to increased use intentions. Thus, the study highlights that AI in employee L&D drives autonomous motivation through self-determination surpassing simple automation-based approaches. These findings provide valuable implications for organizations and practitioners seeking to foster employee motivation and technology acceptance through new L&D solutions, suggesting that investing in AI could be beneficial.
ISBN: 9798384276715Subjects--Topical Terms:
3562296
Online instruction.
Transforming Learning & Development : The Impact of Artificial Intelligence and Automation on Employee Motivation to Learn.
LDR
:04580nmm a2200337 4500
001
2404255
005
20241203090616.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798384276715
035
$a
(MiAaPQ)AAI31368459
035
$a
(MiAaPQ)Portugal104001442653
035
$a
AAI31368459
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Reitgruber, Tanja.
$3
3774557
245
1 0
$a
Transforming Learning & Development : The Impact of Artificial Intelligence and Automation on Employee Motivation to Learn.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
112 p.
500
$a
Source: Masters Abstracts International, Volume: 86-03.
500
$a
Advisor: de Almeida, Ana Filipa Martinho.
502
$a
Thesis (M.M.)--Universidade Catolica Portuguesa (Portugal), 2023.
520
$a
Technological advancements have transformed employee learning and development (L&D) from one-size-fits-all approaches to personalized initiatives. Given AI's potential to learn and adapt to individuals' demands, researchers and practitioners have started investigating AI applications in L&D. However, whether employees prefer AI-guided learning and whether it actually drives motivation to learn remains an empirical question. Thus, this research aims to investigate the impact of AI-guided L&D compared to simple automation-based L&D on employee motivation to learn, drawing on the Self-determination Theory (SDT) and the Unified Theory of Acceptance and Use of Technology (UTAUT). The proposed model was tested using a PLS-SEM analysis with 144 participants in an experimental survey. The results revealed that AI in L&D increases motivation to learn more than simple automation. However, this effect is fully mediated by the increase in perceived competence due to AI, emphasizing the importance of providing customized trainings tailored to employees' learning styles and skills, along with consistent feedback, to foster perceived competence. Furthermore, the study demonstrates that motivation to learn significantly predicts individuals' behavioural intention to use a L&D system. Specifically, AI-guided L&D, promoting competence, generates higher motivation to learn, leading to increased use intentions. Thus, the study highlights that AI in employee L&D drives autonomous motivation through self-determination surpassing simple automation-based approaches. These findings provide valuable implications for organizations and practitioners seeking to foster employee motivation and technology acceptance through new L&D solutions, suggesting that investing in AI could be beneficial.
520
$a
Os avancos tecnologicos revolucionaram a aprendizagem e desenvolvimento dos trabalhadores (L&D), passando de abordagens genericas para personalizadas. Com o potencial da IA em aprender e adaptar-se as necessidades individuais, os investigadores tem-se dedicado a pesquisar potenciais aplicacoes em L&D. No entanto, ainda e uma questao empirica se os funcionarios preferem a aprendizagem orientada por IA e se esta gera maior motivacao para aprender. Esta investigacao visa investigar o impacto da L&D orientada por IA em comparacao com a L&D baseada em automacao simples na motivacao dos funcionarios para aprender, com base na teoria da autodeterminacao (SDT) e na teoria unificada de aceitacao e uso de tecnologia (UTAUT). O modelo proposto foi testado com 144 participantes atraves de uma experiencia utilizando analise PLS-SEM. Os resultados mostraram que a IA em L&D aumenta a motivacao dos trabalhadores mais do que a automacao simples. No entanto, este efeito e mediado pelo aumento da competencia percebida devido a IA, enfatizando a importancia de treino personalizado adaptado aos estilos e habilidades de aprendizagem dos trabalhadores, com feedback consistente, para promover a competencia. A motivacao para aprender demonstrou ser um preditor significativo da intencao comportamental dos individuos de usar um sistema de L&D. Especificamente, a L&D orientada por IA, ao promover a competencia, gera maior motivacao para aprender, resultando em maiores intencoes de uso. Estes resultados tem implicacoes valiosas para organizacoes e profissionais que buscam promover a motivacao dos trabalhadores e a aceitacao de tecnologia em solucoes de L&D, indicando os beneficios do investimento em IA.
590
$a
School code: 7020.
650
4
$a
Online instruction.
$3
3562296
650
4
$a
Software.
$2
gtt.
$3
619355
650
4
$a
Learning management systems.
$3
3683239
650
4
$a
Technology adoption.
$3
3681799
650
4
$a
Distance learning.
$3
3557921
650
4
$a
Educational technology.
$3
517670
690
$a
0800
690
$a
0710
710
2
$a
Universidade Catolica Portuguesa (Portugal).
$3
3705357
773
0
$t
Masters Abstracts International
$g
86-03.
790
$a
7020
791
$a
M.M.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31368459
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9512575
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入