語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Enhanced Computational Homogenizatio...
~
Kumar, Paras.
FindBook
Google Book
Amazon
博客來
Enhanced Computational Homogenization and Phase-Field Fracture Approaches for Polymer Nano-Composites = = Erweiterte numerische Homogenisierungsund Phasenfeld-Bruch-Ansatze furPolymer-Nanokomposite.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Enhanced Computational Homogenization and Phase-Field Fracture Approaches for Polymer Nano-Composites =/
其他題名:
Erweiterte numerische Homogenisierungsund Phasenfeld-Bruch-Ansatze furPolymer-Nanokomposite.
作者:
Kumar, Paras.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
面頁冊數:
216 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Contained By:
Dissertations Abstracts International85-12B.
標題:
Mechanical properties. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31212469
ISBN:
9798383070994
Enhanced Computational Homogenization and Phase-Field Fracture Approaches for Polymer Nano-Composites = = Erweiterte numerische Homogenisierungsund Phasenfeld-Bruch-Ansatze furPolymer-Nanokomposite.
Kumar, Paras.
Enhanced Computational Homogenization and Phase-Field Fracture Approaches for Polymer Nano-Composites =
Erweiterte numerische Homogenisierungsund Phasenfeld-Bruch-Ansatze furPolymer-Nanokomposite. - Ann Arbor : ProQuest Dissertations & Theses, 2024 - 216 p.
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Thesis (Ph.D.)--Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany), 2024.
Polymers reinforced with inorganic filler particles of different shapes and sizes, play a prominent role as constituent materials for structural components in a plethora of applications ranging from rubber tires to biomedical implants. A relatively new class of this omnipresent family of engineering materials includes polymer nano-composites wherein at least one of the dimensions of the filler particles is of the order of nanometers. The superior reinforcement efficacy of nanosized fillers in enhancing the elastic and fracture behavior of the base polymer, in comparison to their conventional microsized counterparts, has been corroborated by several experimental investigations. The aforementioned superior mechanical response, also characterized as the smaller is stronger size effect, results from the formation of interfacial regions or interphases around filler particles, having properties drastically different from those of the polymer matrix, which is much more prevalent in case of nanosized fillers, owing to the much larger specific surface area they afford. Standard two-phase continuum modeling approaches are unable to capture this size effect since they lack the requisite length scale and appropriate enhancementsor extensions are, therefore, necessary.This thesis is concerned with the development of enhanced continuum modeling approaches which can accurately capture the mechanical response of polymer nano-composites. A generic finite-deformation setting is adopted since it enables the modeling of a wide range of polymer composites undergoing large strains prior to fracture. Within the hyperelastic or pre-fracture regime, two enhancements of the standard first-order computational homogenization scheme are investigated in detail, one of which is based on the theory of interface energetics and the other rooted in the physically motivated concept of graded interphases. The former technique includes lower dimensional energetic interfaces possessing their own energetic structure, alike the bulk, at the filler-matrix intersections. The latter, on the other hand, entails a continuous variation or grading in material properties within an interphase region of finite thickness around the filler particles. Extensive numerical experimentation demonstrates the graded-interphase based approach as the better suited candidate for modeling the hyperelastic response of polymer nano-composites with different filler-matrix stiffness contrasts, under generic loading scenarios. Transitioning to the fracture regime, the phase-field fractureapproach, by virtue of its innate ability to handle complex track topologies, is chosen as the basis for further development geared towards modeling crack nucleation and propagation in polymer nano-composites. The graded-interphase concept is combined with the phase-field fracture approach to enable the modeling of a wide spectrum of microscopic fracture responses including different effective fracture behaviors and even particle debonding as commonly observed in case of polymer nano-composites. The developed methodology is also applied to realistic multi-particle micro-structures.
ISBN: 9798383070994Subjects--Topical Terms:
3549505
Mechanical properties.
Enhanced Computational Homogenization and Phase-Field Fracture Approaches for Polymer Nano-Composites = = Erweiterte numerische Homogenisierungsund Phasenfeld-Bruch-Ansatze furPolymer-Nanokomposite.
LDR
:07732nmm a2200385 4500
001
2403787
005
20241125080219.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383070994
035
$a
(MiAaPQ)AAI31212469
035
$a
(MiAaPQ)FAUErlangenFAU_30563_
035
$a
AAI31212469
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Kumar, Paras.
$3
3774067
245
1 0
$a
Enhanced Computational Homogenization and Phase-Field Fracture Approaches for Polymer Nano-Composites =
$b
Erweiterte numerische Homogenisierungsund Phasenfeld-Bruch-Ansatze furPolymer-Nanokomposite.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
216 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
500
$a
Advisor: Mergheim, Julia;Kaliske, Michael.
502
$a
Thesis (Ph.D.)--Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany), 2024.
520
$a
Polymers reinforced with inorganic filler particles of different shapes and sizes, play a prominent role as constituent materials for structural components in a plethora of applications ranging from rubber tires to biomedical implants. A relatively new class of this omnipresent family of engineering materials includes polymer nano-composites wherein at least one of the dimensions of the filler particles is of the order of nanometers. The superior reinforcement efficacy of nanosized fillers in enhancing the elastic and fracture behavior of the base polymer, in comparison to their conventional microsized counterparts, has been corroborated by several experimental investigations. The aforementioned superior mechanical response, also characterized as the smaller is stronger size effect, results from the formation of interfacial regions or interphases around filler particles, having properties drastically different from those of the polymer matrix, which is much more prevalent in case of nanosized fillers, owing to the much larger specific surface area they afford. Standard two-phase continuum modeling approaches are unable to capture this size effect since they lack the requisite length scale and appropriate enhancementsor extensions are, therefore, necessary.This thesis is concerned with the development of enhanced continuum modeling approaches which can accurately capture the mechanical response of polymer nano-composites. A generic finite-deformation setting is adopted since it enables the modeling of a wide range of polymer composites undergoing large strains prior to fracture. Within the hyperelastic or pre-fracture regime, two enhancements of the standard first-order computational homogenization scheme are investigated in detail, one of which is based on the theory of interface energetics and the other rooted in the physically motivated concept of graded interphases. The former technique includes lower dimensional energetic interfaces possessing their own energetic structure, alike the bulk, at the filler-matrix intersections. The latter, on the other hand, entails a continuous variation or grading in material properties within an interphase region of finite thickness around the filler particles. Extensive numerical experimentation demonstrates the graded-interphase based approach as the better suited candidate for modeling the hyperelastic response of polymer nano-composites with different filler-matrix stiffness contrasts, under generic loading scenarios. Transitioning to the fracture regime, the phase-field fractureapproach, by virtue of its innate ability to handle complex track topologies, is chosen as the basis for further development geared towards modeling crack nucleation and propagation in polymer nano-composites. The graded-interphase concept is combined with the phase-field fracture approach to enable the modeling of a wide spectrum of microscopic fracture responses including different effective fracture behaviors and even particle debonding as commonly observed in case of polymer nano-composites. The developed methodology is also applied to realistic multi-particle micro-structures.
520
$a
Polymere, die mit anorganischen Fullstoffpartikeln unterschiedlicher Formen und Grosen verstarkt sind, spielen eine herausragende Rolle als Werkstoffe fur Strukturbauteile in zahlreichen Anwendungen, von Autoreifen bis zu biomedizinischen Implantaten. Eine relativ neue Klasse dieser Werkstofffamilie sind Polymer-Nanokomposite, bei denen mindestens eine der Partikelabmessungen in der Grosenordnung von Nanometern liegt. Im Vergleich zu konventionellen mikroskopischen Partikeln fuhren nanoskalige Fullstoffe zu einer ausgepragteren Verbesserung des Elastizitats- und Bruchverhaltens, wie durch zahlreiche experimentelle Untersuchungen bestatigt. Die Bildung von Grenzschichten oder Interphasen um die Fullstoffpartikel, deren Eigenschaften sich drastisch von denen der Polymermatrix unterscheiden, ist bei Fullstoffen im Nanobereich aufgrund deren viel groseren spezifischen Oberflache weitaus ausgepragter und fuhrt zu dem oben erwahnten besseren mechanischen Verhalten, das auch als "kleiner ist starker"-Effekt bezeichnet wird. Standardmasige Zweiphasen-Kontinuumsmodellierungsansatze sind nicht in der Lage diesen Groseneffekt zu erfassen, da ihnen die erforderliche Langenskala fehlt, wodurch entsprechende Erweiterungenoder Erganzungen erforderlich sind.Diese Arbeit befasst sich mit der Entwicklung erweiterter Kontinuumsmodellierungsansatze, die das mechanische Verhalten von Polymer-Nanokompositen zuverlassig beschreiben konnen. Es wird ein generischer Ansatz fur grose Deformationen gewahlt, da er die Modellierung eines breiten Spektrums von Polymerkompositen ermoglicht, die ublicherweise vor dem Bruch grosen Verzerrungen ausgesetzt sind. Innerhalb des hyperelastischen Bereichs werden zwei Erweiterungen der klassichen numerischen Homogenisierung erster Ordnung im Detail untersucht, von denen eine auf der Theorie der Grenzflachenenergetik und die andere auf dem physikalisch motivierten Konzept der gradierten Interphasen beruht. Bei der ersten Methode werden zwischen Fullstoff und Matrix niederdimensionale energetische Grenzflachen eingebaut, die eine eigene energetische Struktur entsprechend einem Feststoff besitzen. Beim zweiten Konzept hingegen werden die Materialeigenschaften innerhalb eines endlich ausgedehnten Interphasenbereichs um die Fullstoffpartikel herum kontinuierlich verandert oder gradiert. Umfangreiche numerische Untersuchungen zeigen, dass das Konzept der gradierten Interphasen geeigneter fur die Modellierung des hyperelastischen Verhaltens von Polymer-Nanokompositen mit unterschiedlichen Fullstoff-Matrix-Steifigkeitskontrasten unter allgemeinen Lastfallen ist. Fur den Ubergang zum Bruchverhalten wird der Phasenfeldansatz als Grundlage fur die weitere Entwicklung gewahlt, da er in der Lage ist, die komplexen Risstopologien abzubilden, die ublicherweise in Polymer-Nanokompositen auftreten. Das Konzept der gradierten Interphasenwird mit dem Phasenfeldansatz fur Bruchprozesse kombiniert, um die Modellierung eines breiten Spektrums von mikroskopischen Bruchverhalten zu ermoglichen, einschlieslich einer Reihe von effektiven Bruchverhaltensweisen und sogar der Partikelablosung wie es im Fall von Polymer-Nanokompositen haufig beobachtet wird. Die entwickelte Methode ist auch bei realistischen Multi-Partikel-Mikrostrukturen anwendbar.
590
$a
School code: 0575.
650
4
$a
Mechanical properties.
$3
3549505
650
4
$a
Polymers.
$3
535398
650
4
$a
Kinematics.
$3
571109
650
4
$a
Nanoparticles.
$3
605747
650
4
$a
Homogenization.
$3
3561160
650
4
$a
Particle size.
$3
3564817
650
4
$a
Engineering.
$3
586835
650
4
$a
Deformation.
$2
lcstt
$3
3267001
650
4
$a
Mechanics.
$3
525881
650
4
$a
Composite materials.
$3
654082
650
4
$a
Interfaces.
$2
gtt
$3
834756
650
4
$a
Materials science.
$3
543314
650
4
$a
Nanotechnology.
$3
526235
650
4
$a
Polymer chemistry.
$3
3173488
650
4
$a
Chemistry.
$3
516420
690
$a
0346
690
$a
0537
690
$a
0794
690
$a
0652
690
$a
0495
690
$a
0485
710
2
$a
Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).
$3
3564652
773
0
$t
Dissertations Abstracts International
$g
85-12B.
790
$a
0575
791
$a
Ph.D.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31212469
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9512107
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入