語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Improvements to Remote Sensing Algor...
~
Pachniak, Elliot.
FindBook
Google Book
Amazon
博客來
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks./
作者:
Pachniak, Elliot.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
面頁冊數:
123 p.
附註:
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
Contained By:
Dissertations Abstracts International86-01B.
標題:
Remote sensing. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31146353
ISBN:
9798383181737
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
Pachniak, Elliot.
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 123 p.
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
Thesis (Ph.D.)--Stevens Institute of Technology, 2024.
Modern satellite remote sensing plays a crucial role in providing data on various water, atmosphere, and land surface conditions. This research introduces improvements to remote sensing methods through a new method for quantifying measurement uncertainties in atmospheric correction algorithms of an existing tool for retrieval of aerosol and marine parameters from ocean color data (OC-SMART); an exploration of the impact of hyperspectral versus multispectral data channels on snow parameter retrieval algorithms; and applications of OC-SMART to Arctic water inherent optical property retrievals. Chapter 1 contains a background on remote sensing of environments; chapter 2 discusses critical tools used in this research; chapter 3 describes how to quantify uncertainties in OC-SMART using Bayesian inversion; chapter 4 explores the impact of hyperspectral information on retrievals of snow grain size and impurity concentration; chapter 5 discusses the application of OC-SMART to Arctic water inherent optical property retrievals; and chapter 6 summarizes the research and provides closing remarks.
ISBN: 9798383181737Subjects--Topical Terms:
535394
Remote sensing.
Subjects--Index Terms:
Modern satellite
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
LDR
:02299nmm a2200397 4500
001
2400117
005
20240924101908.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383181737
035
$a
(MiAaPQ)AAI31146353
035
$a
AAI31146353
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Pachniak, Elliot.
$3
3770085
245
1 0
$a
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
123 p.
500
$a
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
500
$a
Advisor: Stamnes, Knut.
502
$a
Thesis (Ph.D.)--Stevens Institute of Technology, 2024.
520
$a
Modern satellite remote sensing plays a crucial role in providing data on various water, atmosphere, and land surface conditions. This research introduces improvements to remote sensing methods through a new method for quantifying measurement uncertainties in atmospheric correction algorithms of an existing tool for retrieval of aerosol and marine parameters from ocean color data (OC-SMART); an exploration of the impact of hyperspectral versus multispectral data channels on snow parameter retrieval algorithms; and applications of OC-SMART to Arctic water inherent optical property retrievals. Chapter 1 contains a background on remote sensing of environments; chapter 2 discusses critical tools used in this research; chapter 3 describes how to quantify uncertainties in OC-SMART using Bayesian inversion; chapter 4 explores the impact of hyperspectral information on retrievals of snow grain size and impurity concentration; chapter 5 discusses the application of OC-SMART to Arctic water inherent optical property retrievals; and chapter 6 summarizes the research and provides closing remarks.
590
$a
School code: 0733.
650
4
$a
Remote sensing.
$3
535394
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Computer science.
$3
523869
653
$a
Modern satellite
653
$a
Bayesian inversion
653
$a
Ocean color data
653
$a
Marine parameters
653
$a
Machine learning
653
$a
Neural networks
690
$a
0799
690
$a
0984
690
$a
0464
710
2
$a
Stevens Institute of Technology.
$b
Physics / Polymer Engineering.
$3
3276949
773
0
$t
Dissertations Abstracts International
$g
86-01B.
790
$a
0733
791
$a
Ph.D.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31146353
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9508437
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入