語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Comprehensive Study of Deep Learni...
~
Praveen, Bishwas.
FindBook
Google Book
Amazon
博客來
A Comprehensive Study of Deep Learning Frameworks for UAVs-Centric Land Remote Sensing Data Analysis Applications.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A Comprehensive Study of Deep Learning Frameworks for UAVs-Centric Land Remote Sensing Data Analysis Applications./
作者:
Praveen, Bishwas.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
163 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Contained By:
Dissertations Abstracts International85-01B.
標題:
Computer science. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30527889
ISBN:
9798379898687
A Comprehensive Study of Deep Learning Frameworks for UAVs-Centric Land Remote Sensing Data Analysis Applications.
Praveen, Bishwas.
A Comprehensive Study of Deep Learning Frameworks for UAVs-Centric Land Remote Sensing Data Analysis Applications.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 163 p.
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Thesis (Ph.D.)--The University of Alabama in Huntsville, 2023.
This item must not be sold to any third party vendors.
Land Remote Sensing data analysis presents a distinctive Artificial Intelligence (AI) research paradigm bolstered through its rich collection of data, which are high-dimensional, generally in the form of tens/hundreds of spectral bands, and accommodates significant spatial and spectral/temporal information about the underlying terrain. Traditional remote sensing data analysis methodologies in literature are often observed to be biased towards providing more importance to spectral information, which evidently hurts the efficacy of such approaches. As a result, a considerable amount of effort in terms of research has been invested in effectively building data analysis methodologies which are spatial-, spectral-, and contextual-information inclusive, which improves the overall performance. However, this process of extracting necessary additional information and knowledge discovery requires increased computation and hardware requirements (memory) which are not always readily accessible or available in time-sensitive data analysis applications. Also, such approaches lack the intrinsic ability to prioritize information that is cardinal to boost the performance of such techniques, which impedes efficient automation, performance and the ability to build frameworks for real-time land remote sensing data analysis. Hence, to address the aforementioned challenges, this dissertation presents a series of deep-learning-based attention methodologies that are spatial-spectral information inclusive and inherently have the capability to prioritize information that is pivotal for a robust and light-weighted land remote sensing data analysis and classification framework pertinent to Unmanned Aerial Vehicles (UAVs)-based autonomous systems that have limited resource platforms. This dissertation also presents a new framework for detecting landmarks or key points for UAVs in real-time using image data from an on-board camera sensor. The proposed framework consists of two major phases: the first phase involves training an efficient landmark detection algorithm for detecting the landmarks of interest using both real and synthetic data samples, and the second phase involves detecting the known key points or anchor points from the captured images, which correspond to the key areas of interest from the perspective of UAVs. The framework has the potential to increase the safety and productivity of UAV operations by enabling real-time detection of critical landmarks during disaster relief, unmanned military operations, and other applications. In conclusion, this dissertation provides an efficient means for automation, extraction and prioritization of spatial- and spectral-information present in land remote sensing data compared to the conventional spatial- or spectral information-only based analysis methodologies. Experimental results reveal that the proposed land remote sensing data analysis models outperform the conventional approaches from literature. The research outcomes from this work will have significant implications in advancing the state-of-the-art deep learning attention methodologies for a UAV autonomous system-centric data analysis applications.
ISBN: 9798379898687Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Attention
A Comprehensive Study of Deep Learning Frameworks for UAVs-Centric Land Remote Sensing Data Analysis Applications.
LDR
:04455nmm a2200397 4500
001
2396726
005
20240611104927.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798379898687
035
$a
(MiAaPQ)AAI30527889
035
$a
AAI30527889
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Praveen, Bishwas.
$3
3766469
245
1 2
$a
A Comprehensive Study of Deep Learning Frameworks for UAVs-Centric Land Remote Sensing Data Analysis Applications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
163 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
500
$a
Advisor: Menon, Vineetha.
502
$a
Thesis (Ph.D.)--The University of Alabama in Huntsville, 2023.
506
$a
This item must not be sold to any third party vendors.
520
$a
Land Remote Sensing data analysis presents a distinctive Artificial Intelligence (AI) research paradigm bolstered through its rich collection of data, which are high-dimensional, generally in the form of tens/hundreds of spectral bands, and accommodates significant spatial and spectral/temporal information about the underlying terrain. Traditional remote sensing data analysis methodologies in literature are often observed to be biased towards providing more importance to spectral information, which evidently hurts the efficacy of such approaches. As a result, a considerable amount of effort in terms of research has been invested in effectively building data analysis methodologies which are spatial-, spectral-, and contextual-information inclusive, which improves the overall performance. However, this process of extracting necessary additional information and knowledge discovery requires increased computation and hardware requirements (memory) which are not always readily accessible or available in time-sensitive data analysis applications. Also, such approaches lack the intrinsic ability to prioritize information that is cardinal to boost the performance of such techniques, which impedes efficient automation, performance and the ability to build frameworks for real-time land remote sensing data analysis. Hence, to address the aforementioned challenges, this dissertation presents a series of deep-learning-based attention methodologies that are spatial-spectral information inclusive and inherently have the capability to prioritize information that is pivotal for a robust and light-weighted land remote sensing data analysis and classification framework pertinent to Unmanned Aerial Vehicles (UAVs)-based autonomous systems that have limited resource platforms. This dissertation also presents a new framework for detecting landmarks or key points for UAVs in real-time using image data from an on-board camera sensor. The proposed framework consists of two major phases: the first phase involves training an efficient landmark detection algorithm for detecting the landmarks of interest using both real and synthetic data samples, and the second phase involves detecting the known key points or anchor points from the captured images, which correspond to the key areas of interest from the perspective of UAVs. The framework has the potential to increase the safety and productivity of UAV operations by enabling real-time detection of critical landmarks during disaster relief, unmanned military operations, and other applications. In conclusion, this dissertation provides an efficient means for automation, extraction and prioritization of spatial- and spectral-information present in land remote sensing data compared to the conventional spatial- or spectral information-only based analysis methodologies. Experimental results reveal that the proposed land remote sensing data analysis models outperform the conventional approaches from literature. The research outcomes from this work will have significant implications in advancing the state-of-the-art deep learning attention methodologies for a UAV autonomous system-centric data analysis applications.
590
$a
School code: 0278.
650
4
$a
Computer science.
$3
523869
650
4
$a
Remote sensing.
$3
535394
653
$a
Attention
653
$a
Classification
653
$a
Deep learning
653
$a
Land remote sensing
653
$a
Landmark detection
690
$a
0800
690
$a
0984
690
$a
0799
710
2
$a
The University of Alabama in Huntsville.
$b
Computer Science.
$3
3174409
773
0
$t
Dissertations Abstracts International
$g
85-01B.
790
$a
0278
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30527889
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9505046
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入