語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Prediction of Outcomes in Higher Cou...
~
Mumcuoglu, Emre.
FindBook
Google Book
Amazon
博客來
Prediction of Outcomes in Higher Courts of Turkey Using Natural Language Processing = = Dogal Dil Isleme Yontemleri Kullanilarak Turk Yuksek Mahkemelerinde Karar Tahmini.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Prediction of Outcomes in Higher Courts of Turkey Using Natural Language Processing =/
其他題名:
Dogal Dil Isleme Yontemleri Kullanilarak Turk Yuksek Mahkemelerinde Karar Tahmini.
作者:
Mumcuoglu, Emre.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2022,
面頁冊數:
71 p.
附註:
Source: Masters Abstracts International, Volume: 84-02.
Contained By:
Masters Abstracts International84-02.
標題:
Language. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29274669
ISBN:
9798841571407
Prediction of Outcomes in Higher Courts of Turkey Using Natural Language Processing = = Dogal Dil Isleme Yontemleri Kullanilarak Turk Yuksek Mahkemelerinde Karar Tahmini.
Mumcuoglu, Emre.
Prediction of Outcomes in Higher Courts of Turkey Using Natural Language Processing =
Dogal Dil Isleme Yontemleri Kullanilarak Turk Yuksek Mahkemelerinde Karar Tahmini. - Ann Arbor : ProQuest Dissertations & Theses, 2022 - 71 p.
Source: Masters Abstracts International, Volume: 84-02.
Thesis (M.Sc.)--Bilkent Universitesi (Turkey), 2022.
This item must not be sold to any third party vendors.
The use of Natural Language Processing (NLP) in the field of law has become a topic of interest in the recent years. Applications to Turkish law, however, have remained unexplored to this day. In this thesis, first, a review of existing NLP applications in law is provided, and then, the problem of predicting Turkish court decisions is studied using NLP techniques. An extensive corpus that consists of case texts from Turkish higher courts, namely, the Constitutional Court and District Courts, is compiled. In addition, a numerical analysis and comparison of NLP methods at predicting the outcomes of these higher court cases is provided. The methods used for prediction are based on Decision Trees, Random Forests, Support Vector Machines and various deep learning models; specifically Gated Recurrent Units, unidirectional and bidirectional Long Short-Term Memory networks, and their attention-integrated counterparts. Prediction results for all algorithms are presented comparatively across all courts. The results show that decisions of Turkish higher courts can be predicted with high accuracy, especially with deep learning-based methods. Similar performance to existing work in the literature on case outcome prediction, which focus on different languages and different legal systems, is achieved.
ISBN: 9798841571407Subjects--Topical Terms:
643551
Language.
Prediction of Outcomes in Higher Courts of Turkey Using Natural Language Processing = = Dogal Dil Isleme Yontemleri Kullanilarak Turk Yuksek Mahkemelerinde Karar Tahmini.
LDR
:04065nmm a2200397 4500
001
2393103
005
20240116054223.5
006
m o d
007
cr#unu||||||||
008
251215s2022 ||||||||||||||||| ||eng d
020
$a
9798841571407
035
$a
(MiAaPQ)AAI29274669
035
$a
(MiAaPQ)Bilkent_1169379425
035
$a
AAI29274669
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Mumcuoglu, Emre.
$3
3762544
245
1 0
$a
Prediction of Outcomes in Higher Courts of Turkey Using Natural Language Processing =
$b
Dogal Dil Isleme Yontemleri Kullanilarak Turk Yuksek Mahkemelerinde Karar Tahmini.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
71 p.
500
$a
Source: Masters Abstracts International, Volume: 84-02.
500
$a
Advisor: Ozaktas, Memduh Haldun;Koc, Aykut;Cukur, Tolga;Turkmen, Arzucan Ozgur.
502
$a
Thesis (M.Sc.)--Bilkent Universitesi (Turkey), 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
The use of Natural Language Processing (NLP) in the field of law has become a topic of interest in the recent years. Applications to Turkish law, however, have remained unexplored to this day. In this thesis, first, a review of existing NLP applications in law is provided, and then, the problem of predicting Turkish court decisions is studied using NLP techniques. An extensive corpus that consists of case texts from Turkish higher courts, namely, the Constitutional Court and District Courts, is compiled. In addition, a numerical analysis and comparison of NLP methods at predicting the outcomes of these higher court cases is provided. The methods used for prediction are based on Decision Trees, Random Forests, Support Vector Machines and various deep learning models; specifically Gated Recurrent Units, unidirectional and bidirectional Long Short-Term Memory networks, and their attention-integrated counterparts. Prediction results for all algorithms are presented comparatively across all courts. The results show that decisions of Turkish higher courts can be predicted with high accuracy, especially with deep learning-based methods. Similar performance to existing work in the literature on case outcome prediction, which focus on different languages and different legal systems, is achieved.
520
$a
Dogal Dil Isleme'nin (DDI) hukuk alanindaki uygulamalari arastirmacilarin son yillarda artarak ilgisini cekerken Turk hukuku icin olasi uygulamalari inceleyen bir calisma bulunmamaktadir. Biz, ilk olarak DDI'nin halihazirda literaturde olan hukuki uygulamalarini gozden geciriyor, sonra da Turk mahkemeleri ozelinde dava metinlerinden mahkeme kararini tahmin etme problemini ele aliyoruz. Bu tezin alana baslica iki katkisindan ilki, Turk yuksek mahkemelerinden Anayasa Mahkemesi ve Istinaf Mahkemelerinin karar metinlerinden kapsamli bir der- lem olusturulmasidir. Ikinci katkisi ise, bu dava metinleri uzerinden mahke- menin kararini tahmin etmede cesitli DDI yontemlerinin nicel olarak incelen- mesi ve kiyaslanmasidir. Karar tahmin etmede kullanilan algoritmalar Karar Agaclari, Rastgele Ormanlar, Destek Vektoru Makineleri ve muhtelif derin ogrenme yontemlerine dayanmaktadir. Sozu gecen derin ogrenme yontemleri Gecitli Mukerrer Hucreler, tek yonlu ve cift yonlu Uzun-Kisa Vade Hafiza aglari ve bunlarin dikkat mekanizmasi eklenmis cesitleridir. Butun bu algoritmalarin karar tahminindeki performanslarmi her bir mahkeme icin mukayeseli bir bicimde ortaya koyuyoruz. Turk yuksek mahkemelerinin kararlarinin ozellikle derin ogrenme yontemleri kullanilarak yuksek isabet oranlariyla tahmin edilebilecegini gosteriyoruz. Diger ulkelerin mahkemeleri icin farkli dillerdeki dava metinlerinde yapilmis benzer calismalara yakin sonuclar elde ediyoruz.
590
$a
School code: 1159.
650
4
$a
Language.
$3
643551
650
4
$a
Text categorization.
$3
3689475
650
4
$a
Deep learning.
$3
3554982
650
4
$a
Judiciary.
$3
3562072
650
4
$a
Legal documents.
$3
3702007
650
4
$a
District courts.
$3
3762545
650
4
$a
Constitutional law.
$3
572337
650
4
$a
Support vector machines.
$3
2058743
650
4
$a
Jurisdiction.
$3
890764
650
4
$a
Legislation.
$3
766385
650
4
$a
Natural language processing.
$3
1073412
650
4
$a
Algorithms.
$3
536374
650
4
$a
Decision trees.
$3
827433
650
4
$a
Federal court decisions.
$3
3562074
650
4
$a
Human rights.
$3
527798
650
4
$a
Information retrieval.
$3
566853
650
4
$a
Judges & magistrates.
$3
3562075
650
4
$a
Computer science.
$3
523869
650
4
$a
Law.
$3
600858
650
4
$a
Middle Eastern studies.
$3
3168421
650
4
$a
Political science.
$3
528916
690
$a
0800
690
$a
0679
690
$a
0984
690
$a
0398
690
$a
0555
690
$a
0615
710
2
$a
Bilkent Universitesi (Turkey).
$3
1919057
773
0
$t
Masters Abstracts International
$g
84-02.
790
$a
1159
791
$a
M.Sc.
792
$a
2022
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29274669
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9501423
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入