Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Stochastic calculus in infinite dime...
~
Goodair, Daniel.
Linked to FindBook
Google Book
Amazon
博客來
Stochastic calculus in infinite dimensions and SPDEs
Record Type:
Electronic resources : Monograph/item
Title/Author:
Stochastic calculus in infinite dimensions and SPDEs/ by Daniel Goodair, Dan Crisan.
Author:
Goodair, Daniel.
other author:
Crisan, Dan.
Published:
Cham :Springer Nature Switzerland : : 2024.,
Description:
x, 136 p. :ill., digital ;24 cm.
[NT 15003449]:
1 Introduction -- 2 Stochastic Calculus in Infinite Dimensions -- 3 Stochastic Differential Equations in Infinite Dimensions -- 4 A Toolbox for Nonlinear SPDEs -- 5 Existence Theory for Nonlinear SPDEs and the Stochastic Navier-Stokes Equations -- A Appendix -- References -- Index.
Contained By:
Springer Nature eBook
Subject:
Stochastic partial differential equations. -
Online resource:
https://doi.org/10.1007/978-3-031-69586-5
ISBN:
9783031695865
Stochastic calculus in infinite dimensions and SPDEs
Goodair, Daniel.
Stochastic calculus in infinite dimensions and SPDEs
[electronic resource] /by Daniel Goodair, Dan Crisan. - Cham :Springer Nature Switzerland :2024. - x, 136 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8201. - SpringerBriefs in mathematics..
1 Introduction -- 2 Stochastic Calculus in Infinite Dimensions -- 3 Stochastic Differential Equations in Infinite Dimensions -- 4 A Toolbox for Nonlinear SPDEs -- 5 Existence Theory for Nonlinear SPDEs and the Stochastic Navier-Stokes Equations -- A Appendix -- References -- Index.
Introducing a groundbreaking framework for stochastic partial differential equations (SPDEs), this work presents three significant advancements over the traditional variational approach. Firstly, Stratonovich SPDEs are explicitly addressed. Widely used in physics, Stratonovich SPDEs have typically been converted to Ito form for mathematical treatment. While this conversion is understood heuristically, a comprehensive treatment in infinite dimensions has been lacking, primarily due to insufficient rigorous results on martingale properties. Secondly, the framework incorporates differential noise, assuming the noise operator is only bounded from a smaller Hilbert space into a larger one, rather than within the same space. This necessitates additional regularity in the Ito form to solve the original Stratonovich SPDE. This aspect has been largely overlooked, despite the increasing popularity of gradient-dependent Stratonovich noise in fluid dynamics and regularisation by noise studies. Lastly, the framework departs from the explicit duality structure (Gelfand Triple), which is typically expected in the study of analytically strong solutions. This extension builds on the classical variational framework established by Röckner and Pardoux, advancing it in all three key aspects. Explore this innovative approach that not only addresses existing challenges but also opens new avenues for research and application in SPDEs.
ISBN: 9783031695865
Standard No.: 10.1007/978-3-031-69586-5doiSubjects--Topical Terms:
625093
Stochastic partial differential equations.
LC Class. No.: QA274.25
Dewey Class. No.: 519.22
Stochastic calculus in infinite dimensions and SPDEs
LDR
:02851nmm a22003735a 4500
001
2388457
003
DE-He213
005
20240830130251.0
006
m d
007
cr nn 008maaau
008
250916s2024 sz s 0 eng d
020
$a
9783031695865
$q
(electronic bk.)
020
$a
9783031695858
$q
(paper)
024
7
$a
10.1007/978-3-031-69586-5
$2
doi
035
$a
978-3-031-69586-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.25
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.22
$2
23
090
$a
QA274.25
$b
.G646 2024
100
1
$a
Goodair, Daniel.
$3
3753555
245
1 0
$a
Stochastic calculus in infinite dimensions and SPDEs
$h
[electronic resource] /
$c
by Daniel Goodair, Dan Crisan.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2024.
300
$a
x, 136 p. :
$b
ill., digital ;
$c
24 cm.
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8201
505
0
$a
1 Introduction -- 2 Stochastic Calculus in Infinite Dimensions -- 3 Stochastic Differential Equations in Infinite Dimensions -- 4 A Toolbox for Nonlinear SPDEs -- 5 Existence Theory for Nonlinear SPDEs and the Stochastic Navier-Stokes Equations -- A Appendix -- References -- Index.
520
$a
Introducing a groundbreaking framework for stochastic partial differential equations (SPDEs), this work presents three significant advancements over the traditional variational approach. Firstly, Stratonovich SPDEs are explicitly addressed. Widely used in physics, Stratonovich SPDEs have typically been converted to Ito form for mathematical treatment. While this conversion is understood heuristically, a comprehensive treatment in infinite dimensions has been lacking, primarily due to insufficient rigorous results on martingale properties. Secondly, the framework incorporates differential noise, assuming the noise operator is only bounded from a smaller Hilbert space into a larger one, rather than within the same space. This necessitates additional regularity in the Ito form to solve the original Stratonovich SPDE. This aspect has been largely overlooked, despite the increasing popularity of gradient-dependent Stratonovich noise in fluid dynamics and regularisation by noise studies. Lastly, the framework departs from the explicit duality structure (Gelfand Triple), which is typically expected in the study of analytically strong solutions. This extension builds on the classical variational framework established by Röckner and Pardoux, advancing it in all three key aspects. Explore this innovative approach that not only addresses existing challenges but also opens new avenues for research and application in SPDEs.
650
0
$a
Stochastic partial differential equations.
$3
625093
650
1 4
$a
Stochastic Calculus.
$3
3599429
700
1
$a
Crisan, Dan.
$3
1001299
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
1566700
856
4 0
$u
https://doi.org/10.1007/978-3-031-69586-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9499221
電子資源
11.線上閱覽_V
電子書
EB QA274.25
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login