語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Bayesian nonparametric statistics = École d'été de probabilités de Saint-Flour LI - 2023 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bayesian nonparametric statistics/ by Ismaël Castillo.
其他題名:
École d'été de probabilités de Saint-Flour LI - 2023 /
作者:
Castillo, Ismaël.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xii, 216 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Nonparametric statistics. -
電子資源:
https://doi.org/10.1007/978-3-031-74035-0
ISBN:
9783031740350
Bayesian nonparametric statistics = École d'été de probabilités de Saint-Flour LI - 2023 /
Castillo, Ismaël.
Bayesian nonparametric statistics
École d'été de probabilités de Saint-Flour LI - 2023 /[electronic resource] :by Ismaël Castillo. - Cham :Springer Nature Switzerland :2024. - xii, 216 p. :ill. (some col.), digital ;24 cm. - Lecture notes in mathematics,v. 23581617-9692 ;. - Lecture notes in mathematics ;v. 2358..
This up-to-date overview of Bayesian nonparametric statistics provides both an introduction to the field and coverage of recent research topics, including deep neural networks, high-dimensional models and multiple testing, Bernstein-von Mises theorems and variational Bayes approximations, many of which have previously only been accessible through research articles. Although Bayesian posterior distributions are widely applied in astrophysics, inverse problems, genomics, machine learning and elsewhere, their theory is still only partially understood, especially in complex settings such as nonparametric or semiparametric models. Here, the available theory on the frequentist analysis of posterior distributions is outlined in terms of convergence rates, limiting shape results and uncertainty quantification. Based on lecture notes for a course given at the St-Flour summer school in 2023, the book is aimed at researchers and graduate students in statistics and probability.
ISBN: 9783031740350
Standard No.: 10.1007/978-3-031-74035-0doiSubjects--Topical Terms:
533309
Nonparametric statistics.
LC Class. No.: QA278.8
Dewey Class. No.: 519.542
Bayesian nonparametric statistics = École d'été de probabilités de Saint-Flour LI - 2023 /
LDR
:02129nmm a2200337 a 4500
001
2381116
003
DE-He213
005
20241119121020.0
006
m d
007
cr nn 008maaau
008
250418s2024 sz s 0 eng d
020
$a
9783031740350
$q
(electronic bk.)
020
$a
9783031740343
$q
(paper)
024
7
$a
10.1007/978-3-031-74035-0
$2
doi
035
$a
978-3-031-74035-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.8
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.542
$2
23
090
$a
QA278.8
$b
.C352 2024
100
1
$a
Castillo, Ismaël.
$3
3735053
245
1 0
$a
Bayesian nonparametric statistics
$h
[electronic resource] :
$b
École d'été de probabilités de Saint-Flour LI - 2023 /
$c
by Ismaël Castillo.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2024.
300
$a
xii, 216 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2358
490
1
$a
École d'été de probabilités de Saint-Flour
520
$a
This up-to-date overview of Bayesian nonparametric statistics provides both an introduction to the field and coverage of recent research topics, including deep neural networks, high-dimensional models and multiple testing, Bernstein-von Mises theorems and variational Bayes approximations, many of which have previously only been accessible through research articles. Although Bayesian posterior distributions are widely applied in astrophysics, inverse problems, genomics, machine learning and elsewhere, their theory is still only partially understood, especially in complex settings such as nonparametric or semiparametric models. Here, the available theory on the frequentist analysis of posterior distributions is outlined in terms of convergence rates, limiting shape results and uncertainty quantification. Based on lecture notes for a course given at the St-Flour summer school in 2023, the book is aimed at researchers and graduate students in statistics and probability.
650
0
$a
Nonparametric statistics.
$3
533309
650
0
$a
Bayesian statistical decision theory.
$3
551404
650
1 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Calculus of Variations and Optimization.
$3
3538813
650
2 4
$a
Statistical Physics.
$3
892398
650
2 4
$a
Probability Theory.
$3
3538789
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v. 2358.
$3
3735054
830
0
$a
École d'été de probabilités de Saint-Flour.
$3
3735055
856
4 0
$u
https://doi.org/10.1007/978-3-031-74035-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9497881
電子資源
11.線上閱覽_V
電子書
EB QA278.8
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入