語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bayesian spatial modelling with conj...
~
Omre, Henning.
FindBook
Google Book
Amazon
博客來
Bayesian spatial modelling with conjugate prior models
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bayesian spatial modelling with conjugate prior models/ by Henning Omre, Torstein M. Fjeldstad, Ole Bernhard Forberg.
作者:
Omre, Henning.
其他作者:
Fjeldstad, Torstein M.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xvii, 226 p. :ill., digital ;24 cm.
內容註:
- Introduction -- Bayesian Spatial Modelling -- Conjugate Inversion Models -- Random Fields -- Part I Traditional Conjugate Spatial Models -- Likelihood Models -- Prior Models -- Posterior Models -- Model Parameter Inference -- Computational Challenges.
Contained By:
Springer Nature eBook
標題:
Spatial analysis (Statistics) - Mathematical models. -
電子資源:
https://doi.org/10.1007/978-3-031-65418-3
ISBN:
9783031654183
Bayesian spatial modelling with conjugate prior models
Omre, Henning.
Bayesian spatial modelling with conjugate prior models
[electronic resource] /by Henning Omre, Torstein M. Fjeldstad, Ole Bernhard Forberg. - Cham :Springer Nature Switzerland :2024. - xvii, 226 p. :ill., digital ;24 cm.
- Introduction -- Bayesian Spatial Modelling -- Conjugate Inversion Models -- Random Fields -- Part I Traditional Conjugate Spatial Models -- Likelihood Models -- Prior Models -- Posterior Models -- Model Parameter Inference -- Computational Challenges.
This book offers a comprehensive overview of statistical methodology for modelling and evaluating spatial variables useful in a variety of applications. These spatial variables fall into three categories: continuous, like terrain elevation; events, like tree locations; and mosaics, like medical images. Definitions and discussions of random field models are included for each of these three previously mentioned spatial variable types. Moreover, the readers will have access to algorithms suitable for applying this methodology in practical problem solving, and the computational efficiency of these algorithms are discussed. The presentation is made in a consistent predictive Bayesian framework, which allows separate modelling of the observation acquisition procedure, as a likelihood model, and of the spatial variable characteristics, as a prior spatial model. The likelihood and prior models uniquely define the posterior spatial model, which provides the basis for spatial simulations, spatial predictions with associated precisions, and model parameter inference. The emphasis is on Bayesian spatial modelling with conjugate pairs of likelihood and prior models that are analytically tractable and hence suitable for data abundant spatial studies. Alternative methods frequently used in spatial statistics are presented using a unified notation. The book is suitable as a textbook for a 'Spatial Statistics' course at the MSc or PhD level, as it also includes algorithm descriptions, project texts, and exercises.
ISBN: 9783031654183
Standard No.: 10.1007/978-3-031-65418-3doiSubjects--Topical Terms:
627225
Spatial analysis (Statistics)
--Mathematical models.
LC Class. No.: QA278.2
Dewey Class. No.: 001.4226
Bayesian spatial modelling with conjugate prior models
LDR
:02794nmm a2200325 a 4500
001
2375321
003
DE-He213
005
20241004131752.0
006
m d
007
cr nn 008maaau
008
241231s2024 sz s 0 eng d
020
$a
9783031654183
$q
(electronic bk.)
020
$a
9783031654176
$q
(paper)
024
7
$a
10.1007/978-3-031-65418-3
$2
doi
035
$a
978-3-031-65418-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.2
072
7
$a
PBTB
$2
bicssc
072
7
$a
MAT029010
$2
bisacsh
072
7
$a
PBTB
$2
thema
082
0 4
$a
001.4226
$2
23
090
$a
QA278.2
$b
.O56 2024
100
1
$a
Omre, Henning.
$3
3724769
245
1 0
$a
Bayesian spatial modelling with conjugate prior models
$h
[electronic resource] /
$c
by Henning Omre, Torstein M. Fjeldstad, Ole Bernhard Forberg.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2024.
300
$a
xvii, 226 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
- Introduction -- Bayesian Spatial Modelling -- Conjugate Inversion Models -- Random Fields -- Part I Traditional Conjugate Spatial Models -- Likelihood Models -- Prior Models -- Posterior Models -- Model Parameter Inference -- Computational Challenges.
520
$a
This book offers a comprehensive overview of statistical methodology for modelling and evaluating spatial variables useful in a variety of applications. These spatial variables fall into three categories: continuous, like terrain elevation; events, like tree locations; and mosaics, like medical images. Definitions and discussions of random field models are included for each of these three previously mentioned spatial variable types. Moreover, the readers will have access to algorithms suitable for applying this methodology in practical problem solving, and the computational efficiency of these algorithms are discussed. The presentation is made in a consistent predictive Bayesian framework, which allows separate modelling of the observation acquisition procedure, as a likelihood model, and of the spatial variable characteristics, as a prior spatial model. The likelihood and prior models uniquely define the posterior spatial model, which provides the basis for spatial simulations, spatial predictions with associated precisions, and model parameter inference. The emphasis is on Bayesian spatial modelling with conjugate pairs of likelihood and prior models that are analytically tractable and hence suitable for data abundant spatial studies. Alternative methods frequently used in spatial statistics are presented using a unified notation. The book is suitable as a textbook for a 'Spatial Statistics' course at the MSc or PhD level, as it also includes algorithm descriptions, project texts, and exercises.
650
0
$a
Spatial analysis (Statistics)
$x
Mathematical models.
$3
627225
650
0
$a
Bayesian statistical decision theory.
$3
551404
650
1 4
$a
Bayesian Inference.
$3
3386929
650
2 4
$a
Geographical Information System.
$3
3538564
700
1
$a
Fjeldstad, Torstein M.
$3
3724770
700
1
$a
Forberg, Ole Bernhard.
$3
3724771
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-65418-3
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9495770
電子資源
11.線上閱覽_V
電子書
EB QA278.2
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入