語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Positioning and navigation using mac...
~
Yu, Kegen.
FindBook
Google Book
Amazon
博客來
Positioning and navigation using machine learning methods
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Positioning and navigation using machine learning methods/ edited by Kegen Yu.
其他作者:
Yu, Kegen.
出版者:
Singapore :Springer Nature Singapore : : 2024.,
面頁冊數:
x, 374 p. :ill. (chiefly color), digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Indoor localization using ranging model constructed with BP neural network -- Chapter 3. Classification of signal propagation channel using CNN and wavelet packet analysis -- Chapter 4. Semi supervised indoor localization -- Chapter 5. Unsupervised learning for practical indoor localization -- Chapter 6. Deep learning based PDR localization using smartphone sensors and GPS data -- Chapter 7. Deductive reinforcement learning for vehicle navigation -- Chapter 8. Privacy preserving aggregation for federated learning based navigation -- Chapter 9. Learning enhanced INS/GPS integrated navigation -- Chapter 10. UAV localization using deep supervised learning and reinforcement learning -- Chapter 11. Learning based UAV path planning with collision avoidance -- Chapter 12. Learning assisted navigation for planetary rovers -- Chapter 13. Improved planetary rover localization using slip based autonomous ZUPT.
Contained By:
Springer Nature eBook
標題:
Wireless localization. -
電子資源:
https://doi.org/10.1007/978-981-97-6199-9
ISBN:
9789819761999
Positioning and navigation using machine learning methods
Positioning and navigation using machine learning methods
[electronic resource] /edited by Kegen Yu. - Singapore :Springer Nature Singapore :2024. - x, 374 p. :ill. (chiefly color), digital ;24 cm. - Navigation: science and technology,v. 142522-0462 ;. - Navigation: science and technology ;v. 14..
Chapter 1. Introduction -- Chapter 2. Indoor localization using ranging model constructed with BP neural network -- Chapter 3. Classification of signal propagation channel using CNN and wavelet packet analysis -- Chapter 4. Semi supervised indoor localization -- Chapter 5. Unsupervised learning for practical indoor localization -- Chapter 6. Deep learning based PDR localization using smartphone sensors and GPS data -- Chapter 7. Deductive reinforcement learning for vehicle navigation -- Chapter 8. Privacy preserving aggregation for federated learning based navigation -- Chapter 9. Learning enhanced INS/GPS integrated navigation -- Chapter 10. UAV localization using deep supervised learning and reinforcement learning -- Chapter 11. Learning based UAV path planning with collision avoidance -- Chapter 12. Learning assisted navigation for planetary rovers -- Chapter 13. Improved planetary rover localization using slip based autonomous ZUPT.
This is the first book completely dedicated to positioning and navigation using machine learning methods. It deals with ground, aerial, and space positioning and navigation for pedestrians, vehicles, UAVs, and LEO satellites. Most of the major machine learning methods are utilized, including supervised learning, unsupervised learning, deep learning, and reinforcement learning. The book presents both fundamentals and in-depth studies as well as practical examples in positioning and navigation. Extensive data processing and experimental results are provided in the major chapters through conducting experimental campaigns or using in-situ measurements.
ISBN: 9789819761999
Standard No.: 10.1007/978-981-97-6199-9doiSubjects--Topical Terms:
3227049
Wireless localization.
LC Class. No.: TK5103.4895
Dewey Class. No.: 621.3981
Positioning and navigation using machine learning methods
LDR
:02668nmm a2200337 a 4500
001
2375099
003
DE-He213
005
20240917130553.0
006
m d
007
cr nn 008maaau
008
241231s2024 si s 0 eng d
020
$a
9789819761999
$q
(electronic bk.)
020
$a
9789819761982
$q
(paper)
024
7
$a
10.1007/978-981-97-6199-9
$2
doi
035
$a
978-981-97-6199-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5103.4895
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
621.3981
$2
23
090
$a
TK5103.4895
$b
.P855 2024
245
0 0
$a
Positioning and navigation using machine learning methods
$h
[electronic resource] /
$c
edited by Kegen Yu.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2024.
300
$a
x, 374 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
490
1
$a
Navigation: science and technology,
$x
2522-0462 ;
$v
v. 14
505
0
$a
Chapter 1. Introduction -- Chapter 2. Indoor localization using ranging model constructed with BP neural network -- Chapter 3. Classification of signal propagation channel using CNN and wavelet packet analysis -- Chapter 4. Semi supervised indoor localization -- Chapter 5. Unsupervised learning for practical indoor localization -- Chapter 6. Deep learning based PDR localization using smartphone sensors and GPS data -- Chapter 7. Deductive reinforcement learning for vehicle navigation -- Chapter 8. Privacy preserving aggregation for federated learning based navigation -- Chapter 9. Learning enhanced INS/GPS integrated navigation -- Chapter 10. UAV localization using deep supervised learning and reinforcement learning -- Chapter 11. Learning based UAV path planning with collision avoidance -- Chapter 12. Learning assisted navigation for planetary rovers -- Chapter 13. Improved planetary rover localization using slip based autonomous ZUPT.
520
$a
This is the first book completely dedicated to positioning and navigation using machine learning methods. It deals with ground, aerial, and space positioning and navigation for pedestrians, vehicles, UAVs, and LEO satellites. Most of the major machine learning methods are utilized, including supervised learning, unsupervised learning, deep learning, and reinforcement learning. The book presents both fundamentals and in-depth studies as well as practical examples in positioning and navigation. Extensive data processing and experimental results are provided in the major chapters through conducting experimental campaigns or using in-situ measurements.
650
0
$a
Wireless localization.
$3
3227049
650
0
$a
Navigation.
$3
744637
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Communications Engineering, Networks.
$3
891094
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Signal, Speech and Image Processing.
$3
3592727
700
1
$a
Yu, Kegen.
$3
3377983
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Navigation: science and technology ;
$v
v. 14.
$3
3724323
856
4 0
$u
https://doi.org/10.1007/978-981-97-6199-9
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9495548
電子資源
11.線上閱覽_V
電子書
EB TK5103.4895
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入