語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Intelligent optimization = principle...
~
Li, Changhe.
FindBook
Google Book
Amazon
博客來
Intelligent optimization = principles, algorithms and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Intelligent optimization/ by Changhe Li ... [et al.].
其他題名:
principles, algorithms and applications /
其他作者:
Li, Changhe.
出版者:
Singapore :Springer Nature Singapore : : 2024.,
面頁冊數:
xxiii, 361 p. :ill. (some col.), digital ;24 cm.
內容註:
chapter 1 Introduction -- chapter 2 Fundamentals -- chapter 3 Canonical Optimization Algorithms -- chapter 4 Basics of Evolutionary Computation Algorithms -- chapter 5 Popular Evolutionary Computation Algorithms -- chapter 6 Parameter Control and Policy Control -- chapter 7 Exploitation versus Exploration -- chapter 8 Multi-modal Optimization -- chapter 9 Multi-objective Optimization -- chapter 10 Constrained Optimization -- chapter 11 Dynamic Optimization -- Chapter 12 Robust Optimization -- Chapter 13 Large-scale Global Optimization -- Chapter 14 Expensive Optimization -- Chapter 15 Real-world Applications.
Contained By:
Springer Nature eBook
標題:
Evolutionary computation. -
電子資源:
https://doi.org/10.1007/978-981-97-3286-9
ISBN:
9789819732869
Intelligent optimization = principles, algorithms and applications /
Intelligent optimization
principles, algorithms and applications /[electronic resource] :by Changhe Li ... [et al.]. - Singapore :Springer Nature Singapore :2024. - xxiii, 361 p. :ill. (some col.), digital ;24 cm.
chapter 1 Introduction -- chapter 2 Fundamentals -- chapter 3 Canonical Optimization Algorithms -- chapter 4 Basics of Evolutionary Computation Algorithms -- chapter 5 Popular Evolutionary Computation Algorithms -- chapter 6 Parameter Control and Policy Control -- chapter 7 Exploitation versus Exploration -- chapter 8 Multi-modal Optimization -- chapter 9 Multi-objective Optimization -- chapter 10 Constrained Optimization -- chapter 11 Dynamic Optimization -- Chapter 12 Robust Optimization -- Chapter 13 Large-scale Global Optimization -- Chapter 14 Expensive Optimization -- Chapter 15 Real-world Applications.
This textbook comprehensively explores the foundational principles, algorithms, and applications of intelligent optimization, making it an ideal resource for both undergraduate and postgraduate artificial intelligence courses. It remains equally valuable for active researchers and individuals engaged in self-study. Serving as a significant reference, it delves into advanced topics within the evolutionary computation field, including multi-objective optimization, dynamic optimization, constrained optimization, robust optimization, expensive optimization, and other pivotal scientific studies related to optimization. Designed to be approachable and inclusive, this textbook equips readers with the essential mathematical background necessary for understanding intelligent optimization. It employs an accessible writing style, complemented by extensive pseudo-code and diagrams that vividly illustrate the mechanisms, principles, and algorithms of optimization. With a focus on practicality, this textbook provides diverse real-world application examples spanning engineering, games, logistics, and other domains, enabling readers to confidently apply intelligent techniques to actual optimization problems. Recognizing the importance of hands-on experience, the textbook introduces the Open-source Framework for Evolutionary Computation platform (OFEC) as a user-friendly tool. This platform serves as a comprehensive toolkit for implementing, evaluating, visualizing, and benchmarking various optimization algorithms. The book guides readers on maximizing the utility of OFEC for conducting experiments and analyses in the field of evolutionary computation, facilitating a deeper understanding of intelligent optimization through practical application.
ISBN: 9789819732869
Standard No.: 10.1007/978-981-97-3286-9doiSubjects--Topical Terms:
582189
Evolutionary computation.
LC Class. No.: QA76.618
Dewey Class. No.: 006.3
Intelligent optimization = principles, algorithms and applications /
LDR
:03377nmm a2200325 a 4500
001
2373858
003
DE-He213
005
20240711125259.0
006
m d
007
cr nn 008maaau
008
241231s2024 si s 0 eng d
020
$a
9789819732869
$q
(electronic bk.)
020
$a
9789819732852
$q
(paper)
024
7
$a
10.1007/978-981-97-3286-9
$2
doi
035
$a
978-981-97-3286-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.618
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
QA76.618
$b
.I61 2024
245
0 0
$a
Intelligent optimization
$h
[electronic resource] :
$b
principles, algorithms and applications /
$c
by Changhe Li ... [et al.].
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2024.
300
$a
xxiii, 361 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
chapter 1 Introduction -- chapter 2 Fundamentals -- chapter 3 Canonical Optimization Algorithms -- chapter 4 Basics of Evolutionary Computation Algorithms -- chapter 5 Popular Evolutionary Computation Algorithms -- chapter 6 Parameter Control and Policy Control -- chapter 7 Exploitation versus Exploration -- chapter 8 Multi-modal Optimization -- chapter 9 Multi-objective Optimization -- chapter 10 Constrained Optimization -- chapter 11 Dynamic Optimization -- Chapter 12 Robust Optimization -- Chapter 13 Large-scale Global Optimization -- Chapter 14 Expensive Optimization -- Chapter 15 Real-world Applications.
520
$a
This textbook comprehensively explores the foundational principles, algorithms, and applications of intelligent optimization, making it an ideal resource for both undergraduate and postgraduate artificial intelligence courses. It remains equally valuable for active researchers and individuals engaged in self-study. Serving as a significant reference, it delves into advanced topics within the evolutionary computation field, including multi-objective optimization, dynamic optimization, constrained optimization, robust optimization, expensive optimization, and other pivotal scientific studies related to optimization. Designed to be approachable and inclusive, this textbook equips readers with the essential mathematical background necessary for understanding intelligent optimization. It employs an accessible writing style, complemented by extensive pseudo-code and diagrams that vividly illustrate the mechanisms, principles, and algorithms of optimization. With a focus on practicality, this textbook provides diverse real-world application examples spanning engineering, games, logistics, and other domains, enabling readers to confidently apply intelligent techniques to actual optimization problems. Recognizing the importance of hands-on experience, the textbook introduces the Open-source Framework for Evolutionary Computation platform (OFEC) as a user-friendly tool. This platform serves as a comprehensive toolkit for implementing, evaluating, visualizing, and benchmarking various optimization algorithms. The book guides readers on maximizing the utility of OFEC for conducting experiments and analyses in the field of evolutionary computation, facilitating a deeper understanding of intelligent optimization through practical application.
650
0
$a
Evolutionary computation.
$3
582189
650
0
$a
Mathematical optimization.
$3
517763
650
1 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Design and Analysis of Algorithms.
$3
3538532
650
2 4
$a
Continuous Optimization.
$3
1566748
650
2 4
$a
Computational Intelligence.
$3
1001631
700
1
$a
Li, Changhe.
$3
3711474
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-97-3286-9
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9494307
電子資源
11.線上閱覽_V
電子書
EB QA76.618
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入