FindBook      Google Book      Amazon      博客來     
  • The new mathematical coloring book = mathematics of coloring and the colorful life of its creators /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: The new mathematical coloring book/ by Alexander Soifer ; forewords by Peter D. Johnson Jr. ... [et al.].
    其他題名: mathematics of coloring and the colorful life of its creators /
    作者: Soifer, Alexander.
    其他作者: Johnson, Peter D.
    出版者: New York, NY :Springer US : : 2024.,
    面頁冊數: xlviii, 841 p. :ill. (chiefly col.), digital ;24 cm.
    內容註: Epigraph: To Paint a Bird -- Foreword for the New Mathematical Coloring Book by Peter D. Johnson, Jr -- Foreword for the New Mathematical Coloring Book by Geoffrey Exoo -- Foreword for the New Mathematical Coloring Book by Branko Grunbaum. Foreword for The Mathematical Coloring Book by Peter D. Johnson, Jr., Foreword for The Mathematical Coloring Book by Cecil Rousseau -- Acknowledgements -- Greetings to the Reader 2023 -- Greetings to the Reader 2009 -- I. Merry-Go-Round -- 1. A Story of Colored Polygons and Arithmetic Progressions -- II. Colored Plane -- 2. Chromatic Number of the Plane: The Problem -- 3. Chromatic Number of the Plane: An Historical Essay -- 4. Polychromatic Number of the Plane and Results Near the Lower Bound -- 5. De Bruijn-Erdős Reduction to Finite Sets and Results Near the Lower Bound -- 6. Polychromatic Number of the Plane and Results Near the Upper Bound -- 7. Continuum of 6-Colorings of the Plane -- 8. Chromatic Number of the Plane in Special Circumstances -- 9. MeasurableChromatic Number of the Plane -- 10. Coloring in Space -- 11. Rational Coloring -- III. Coloring Graphs -- 12. Chromatic Number of a Graph -- 13. Dimension of a Graph -- 14. Embedding 4-Chromatic Graphs in the Plane -- 15. Embedding World Series -- 16. Exoo-Ismailescu: The Final Word on Problem 15.4 -- 17. Edge Chromatic Number of a Graph -- 18. The Carsten Thomassen 7-Color Theorem -- IV.Coloring Maps -- 19. How the Four-Color Conjecture Was Born -- 20. Victorian Comedy of Errors and Colorful Progress -- 21. Kempe-Heawood's Five-Color Theorem and Tait's Equivalence -- 22. The Four-Color Theorem -- 23. The Great Debate -- 24. How Does One Color Infinite Maps? A Bagatelle -- 25. Chromatic Number of the Plane Meets Map Coloring: The Townsend-Woodall 5-Color Theorem -- V. Colored Graphs -- 26. Paul Erdős -- 27. The De Bruijn-Erdős Theorem and Its History -- 28. Nicolaas Govert de Bruijn -- 29. Edge Colored Graphs: Ramsey and Folkman Numbers -- VI. The Ramsey Principles -- 30. From Pigeonhole Principle to Ramsey Principle -- 31. The Happy End Problem -- 32. The Man behind the Theory: Frank Plumpton Ramsey -- VII. Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath -- 33. Ramsey Theory Before Ramsey: Hilbert's Theorem -- 34. Ramsey Theory Before Ramsey: Schur's Coloring Solution of a Colored Problem and Its Generalizations -- 35. Ramsey Theory Before Ramsey: Van der Waerden Tells the Story of Creation -- 36. Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet -- 38. Monochromatic Arithmetic Progressions or Life After Van der Waerden -- 39. In Search of Van der Waerden: The Early Years -- 40. In Search of Van der Waerden: The Nazi Leipzig, 1933-1945 -- 41. In Search of Van der Waerden: Amsterdam, Year 1945 -- 42. In Search of Van der Waerden: The Unsettling Years, 1946-1951 -- 43. How the Monochromatic AP Theorem Became Classic: Khinchin and Lukomskaya -- VIII. Colored Polygons: Euclidean Ramsey Theory -- 44. Monochromatic Polygons in a 2-Colored Plane -- 45. 3-Colored Plane, 2-Colored Space, and Ramsey Sets -- 46. The Gallai Theorem -- IX. Colored Integers in Service of the Chromatic Number of the Plane: How O'Donnell Unified Ramsey Theory and No One Noticed -- 47. O'Donnell Earns His Doctorate -- 48. Application of Baudet-Schur-Van der Waerden -- 48. Application of Bergelson-Leibman's and Mordell-Faltings' Theorems -- 50. Solution of an Erdős Problem: The O'Donnell Theorem -- X. Ask What Your Computer Can Do for You -- 51. Aubrey D.N.J. de Grey's Breakthrough -- 52. De Grey's Construction -- 53. Marienus Johannes Hendrikus 'Marijn' Heule -- 54. Can We Reach Chromatic 5 Without Mosers Spindles? -- 55. Triangle-Free 5-Chromatic Unit Distance Graphs -- 56. Jaan Parts' Current World Record -- XI. What About Chromatic 6? -- 57. A Stroke of Brilliance: Matthew Huddleston's Proof -- 58. Geoffrey Exoo and Dan Ismailescu or 2 Men from 2 Forbidden Distances -- 59. Jaan Parts on Two-Distance 6-Coloring -- 60. Forbidden Odds, Binaries, and Factorials -- 61. 7-and 8-Chromatic Two-Distance Graphs -- XII. Predicting the Future -- 62. What If We Had No Choice? -- 63. AfterMath and the Shelah-Soifer Class of Graphs -- 64. A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures -- XIII. Imagining the Real, Realizing the Imaginary -- 65. What Do the Founding Set Theorists Think About the Foundations? -- 66. So, What Does It All Mean? -- 67. Imagining the Real or Realizing the Imaginary: Platonism versus Imaginism -- XIV. Farewell to the Reader -- 68. Two Celebrated Problems -- Bibliography -- Name Index -- Subject Index -- Index of Notations.
    Contained By: Springer Nature eBook
    標題: Ramsey theory. -
    電子資源: https://doi.org/10.1007/978-1-0716-3597-1
    ISBN: 9781071635971
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入