語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Poly(Lactic Acid) Block Copolymers : = Synthesis, Characterization, and Structure-Property Relationships = Polymilchsaure-Blockcopolymere.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Poly(Lactic Acid) Block Copolymers :/
其他題名:
Synthesis, Characterization, and Structure-Property Relationships = Polymilchsaure-Blockcopolymere.
其他題名:
Polymilchsaure-Blockcopolymere.
作者:
Hernandez, Benjamin Rodriguez.
面頁冊數:
1 online resource (174 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-04, Section: A.
Contained By:
Dissertations Abstracts International84-04A.
標題:
Mechanical properties. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29417846click for full text (PQDT)
ISBN:
9798352650295
Poly(Lactic Acid) Block Copolymers : = Synthesis, Characterization, and Structure-Property Relationships = Polymilchsaure-Blockcopolymere.
Hernandez, Benjamin Rodriguez.
Poly(Lactic Acid) Block Copolymers :
Synthesis, Characterization, and Structure-Property Relationships = Polymilchsaure-Blockcopolymere.Polymilchsaure-Blockcopolymere. - 1 online resource (174 pages)
Source: Dissertations Abstracts International, Volume: 84-04, Section: A.
Thesis (Ph.D.)--Technische Universitaet Berlin (Germany), 2022.
Includes bibliographical references
Poly(L-lactic acid) (PLLA) is currently the bio-based, biodegradable, and recyclable synthetic polymer with the highest installed production capacity in the world. The environmentally favorable characteristics of PLLA make it attractive for applications in which its biodegradability can prevent the leakage of plastics into the environment (organic waste collection films, agricultural mulch films) or where separation from organic material in direct contact makes recycling unfeasible (food packaging). The relatively high elastic modulus and low elongation at break of pure PLLA however, make for stiff and brittle films that cannot be used in many of the before-mentioned applications. At the same time, PLLA exhibits a relatively low melt strength and low melt viscosity when compared to conventional flexible film-grade materials, which makes processing of PLLA in conventional equipment difficult.In the present work, the mechanical and rheological property profile of PLLA is modified through the synthesis of high molar mass PLLA-b-polyether-b-PLLA block copolymers in an industrially feasible synthesis method. To achieve this, high molar mass polyether diols are used as macroinitiators in the ring opening polymerization (ROP) of L-lactide under similar conditions to those used for the industrial synthesis of conventional PLLA homopolymers (bulk, tin(II) 2-ethylhexanoate [Sn(Oct)2] catalyst, T ~ 180 °C). Different chemical structures of the polyether middle block are introduced into the copolymers by using polyether macroinitiators of different chemical structure (i.e. polyethylene glycol [PEG], polypropylene glycol [PPG], poly(ethylene-co-propylene glycol [PEPG]). The chemical structure of the outer PLLA blocks is modified by using other ring comonomers that are able to undergo copolymerization with the L-lactide monomer at the same reaction conditions (i.e. D-lactide, ε-caprolactone [CL]). Additionally, tetrafunctional PEPG macroinitiators are used to synthesize PLLA>b-polyether-b<PLLA block copolymers with a star topology. To obtain the highest possible block copolymer molar mass values (and thus higher melt viscosities), optimizations during the block copolymer synthesis are studied. Tris(nonylphenyl) phosphite (TNPP) is used to reduce the molar mass degradation reactions during synthesis, and the catalyst concentration is lowered to reduce the molar mass degradation reactions during subsequent processing of the block copolymers.The effects of the different synthesized block copolymer chemical structures on the thermal, mechanical, and rheological properties are systematically investigated through the use of differential scanning calorimetry (DSC), tensile testing, melt flow index (MFI), and oscillatory rheometry to establish a series of structure-property relationships. Changes in the chemical structure of the block copolymers are found to cause changes in the glass transition temperature (Tg) and peak melting temperature (Tm). The changes in the thermal properties are found to significantly affect the mechanical and rheological properties of the block copolymers. The established structure-property relationships are used to design PLLA-b-polyether-b-PLLA block copolymer structures with the required mechanical and rheological properties for flexible blown film applications. The resulting block copolymers are successfully processed under stable conditions in a conventional blown film extrusion line. The obtained blown films have relatively low elastic moduli of around 140 MPa and elongation at break values above 400 %, which are comparable to commercial flexible film materials.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798352650295Subjects--Topical Terms:
3549505
Mechanical properties.
Index Terms--Genre/Form:
542853
Electronic books.
Poly(Lactic Acid) Block Copolymers : = Synthesis, Characterization, and Structure-Property Relationships = Polymilchsaure-Blockcopolymere.
LDR
:09091nmm a2200445K 4500
001
2365711
005
20231218204646.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798352650295
035
$a
(MiAaPQ)AAI29417846
035
$a
(MiAaPQ)TechBerlin_1130317227
035
$a
AAI29417846
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Hernandez, Benjamin Rodriguez.
$3
3706577
245
1 0
$a
Poly(Lactic Acid) Block Copolymers :
$b
Synthesis, Characterization, and Structure-Property Relationships = Polymilchsaure-Blockcopolymere.
246
3 1
$a
Polymilchsaure-Blockcopolymere.
264
0
$c
2022
300
$a
1 online resource (174 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-04, Section: A.
500
$a
Advisor: Lieske, Antje.
502
$a
Thesis (Ph.D.)--Technische Universitaet Berlin (Germany), 2022.
504
$a
Includes bibliographical references
520
$a
Poly(L-lactic acid) (PLLA) is currently the bio-based, biodegradable, and recyclable synthetic polymer with the highest installed production capacity in the world. The environmentally favorable characteristics of PLLA make it attractive for applications in which its biodegradability can prevent the leakage of plastics into the environment (organic waste collection films, agricultural mulch films) or where separation from organic material in direct contact makes recycling unfeasible (food packaging). The relatively high elastic modulus and low elongation at break of pure PLLA however, make for stiff and brittle films that cannot be used in many of the before-mentioned applications. At the same time, PLLA exhibits a relatively low melt strength and low melt viscosity when compared to conventional flexible film-grade materials, which makes processing of PLLA in conventional equipment difficult.In the present work, the mechanical and rheological property profile of PLLA is modified through the synthesis of high molar mass PLLA-b-polyether-b-PLLA block copolymers in an industrially feasible synthesis method. To achieve this, high molar mass polyether diols are used as macroinitiators in the ring opening polymerization (ROP) of L-lactide under similar conditions to those used for the industrial synthesis of conventional PLLA homopolymers (bulk, tin(II) 2-ethylhexanoate [Sn(Oct)2] catalyst, T ~ 180 °C). Different chemical structures of the polyether middle block are introduced into the copolymers by using polyether macroinitiators of different chemical structure (i.e. polyethylene glycol [PEG], polypropylene glycol [PPG], poly(ethylene-co-propylene glycol [PEPG]). The chemical structure of the outer PLLA blocks is modified by using other ring comonomers that are able to undergo copolymerization with the L-lactide monomer at the same reaction conditions (i.e. D-lactide, ε-caprolactone [CL]). Additionally, tetrafunctional PEPG macroinitiators are used to synthesize PLLA>b-polyether-b<PLLA block copolymers with a star topology. To obtain the highest possible block copolymer molar mass values (and thus higher melt viscosities), optimizations during the block copolymer synthesis are studied. Tris(nonylphenyl) phosphite (TNPP) is used to reduce the molar mass degradation reactions during synthesis, and the catalyst concentration is lowered to reduce the molar mass degradation reactions during subsequent processing of the block copolymers.The effects of the different synthesized block copolymer chemical structures on the thermal, mechanical, and rheological properties are systematically investigated through the use of differential scanning calorimetry (DSC), tensile testing, melt flow index (MFI), and oscillatory rheometry to establish a series of structure-property relationships. Changes in the chemical structure of the block copolymers are found to cause changes in the glass transition temperature (Tg) and peak melting temperature (Tm). The changes in the thermal properties are found to significantly affect the mechanical and rheological properties of the block copolymers. The established structure-property relationships are used to design PLLA-b-polyether-b-PLLA block copolymer structures with the required mechanical and rheological properties for flexible blown film applications. The resulting block copolymers are successfully processed under stable conditions in a conventional blown film extrusion line. The obtained blown films have relatively low elastic moduli of around 140 MPa and elongation at break values above 400 %, which are comparable to commercial flexible film materials.
520
$a
Poly(L-Milchsaure) (PLLA) ist derzeit das biobasierte, biologisch abbaubare und recycelbare synthetische Polymer mit der weltweit hochsten installierten Produktionskapazitat. Die umweltfreundlichen Eigenschaften von PLLA machen es attraktiv fur Anwendungen, bei denen seine biologische Abbaubarkeit das Austreten von Kunststoffen in die Umwelt verhindern kann (Folien fur die Sammlung organischer Abfalle, Mulchfolien fur die Landwirtschaft) oder bei denen die Trennung von organischen Abfalle das Recycling unmoglich macht (Lebensmittelverpackungen). Der relativ hohe Elastizitatsmodul und die niedrige Bruchdehnung von reinem PLLA fuhren jedoch zu steifen und sproden Folien, die fur viele der vorgenannten Anwendungen nicht geeignet sind. Gleichzeitig weist PLLA im Vergleich zu herkommlichen flexiblen Folienmaterialien eine relativ geringe Schmelzfestigkeit und niedrige Schmelzviskositat auf, was die Verarbeitung von PLLA in herkommlichen Anlagen erschwert.In der vorliegenden Arbeit wird das mechanische und rheologische Eigenschaftsprofil von PLLA durch die Synthese von hochmolekularen PLLA-b-Polyether-b-PLLA-Blockcopolymeren in einem industriell durchfuhrbaren Syntheseverfahren verandert. Dazu werden hochmolekulare Polyetherdiole als Makroinitiatoren in der Ringoffnungspolymerisation (ROP) von L-Lactid unter ahnlichen Bedingungen wie bei der industriellen Synthese herkommlicher PLLA-Homopolymere verwendet (Bulk, Zinn(II)-2-Ethylhexanoat [Sn(Oct)2]-Katalysator, T~180°C). Unterschiedliche chemische Strukturen des Polyether-Mittelblocks werden in die Copolymere eingefuhrt, indem Polyether-Makroinitiatoren unterschiedlicher chemischer Struktur verwendet werden (Polyethylenglykol [PEG], Polypropylenglykol [PPG], Poly(ethylen-co-propylenglykol [PEPG]). Die chemische Struktur der auseren PLLA-Blocke wird durch die Verwendung anderer Ringcomonomere modifiziert, die unter den gleichen Reaktionsbedingungen mit dem L-Lactid-Monomer copolymerisieren konnen (z.B. D-Lactid, ε-Caprolacton [CL]). Zusatzlich werden tetrafunktionelle PEPG-Makroinitiatoren verwendet, um PLLA>b-Polyether-b<PLLA-Blockcopolymere mit einer Sterntopologie zu synthetisieren. Um die hochstmoglichen Molmassenwerte der Blockcopolymere (und damit hohere Schmelzviskositaten) zu erreichen, werden Optimierungen wahrend der Blockcopolymersynthese untersucht. Tris(nonylphenyl)phosphit (TNPP) wird verwendet, um die Molmassenabbaureaktionen wahrend der Synthese zu reduzieren, und die Katalysatorkonzentration wird gesenkt, um die Molmassenabbaureaktionen wahrend der anschliesenden Verarbeitung der Blockcopolymere zu verringern.Die Auswirkungen der verschiedenen chemischen Strukturen der synthetisierten Blockcopolymere auf die thermischen, mechanischen und rheologischen Eigenschaften werden systematisch mit Hilfe der Differential-Scanning-Kalorimetrie (DSC), der Zugprufung, des Melt-Flow-Indexes (MFI) und der Oszillationsrheometrie untersucht, um eine Reihe von Struktur-Eigenschafts-Beziehungen zu definieren. Die Veranderungen in der chemischen Struktur der Blockcopolymere haben zu Veranderungen der Glasubergangstemperatur (Tg) und der Spitzenschmelztemperatur (Tm) gefuhrt. Es wurde festgestellt, dass die Veranderungen der thermischen Eigenschaften (Tg, Tm) die mechanischen und rheologischen Eigenschaften der Blockcopolymere erheblich beeinflussen. Die ermittelten Struktur-Eigenschafts-Beziehungen werden genutzt, um PLLA-b-Polyether-b-PLLA-Blockcopolymerstrukturen mit den erforderlichen mechanischen und rheologischen Eigenschaften fur flexible Blasfolienanwendungen zu entwickeln. Die resultierenden Blockcopolymere werden erfolgreich unter stabilen Bedingungen in einer konventionellen Blasfolienextrusionsanlage verarbeitet. Die erhaltenen Blasfolien haben relativ niedrige Elastizitatsmodule von etwa 140 MPa und Bruchdehnungswerte von uber 400 %, die mit kommerziellen flexiblen Folienmaterialien vergleichbar sind.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical properties.
$3
3549505
650
4
$a
Low density polyethylenes.
$3
3695272
650
4
$a
Fermentation.
$3
658044
650
4
$a
By products.
$3
3564729
650
4
$a
Viscosity.
$3
1050706
650
4
$a
Recycling.
$3
3564521
650
4
$a
Rheology.
$3
570780
650
4
$a
Conversion.
$3
630691
650
4
$a
Polymerization.
$3
560492
650
4
$a
Copolymers.
$3
1073457
650
4
$a
Molecular weight.
$3
3683783
650
4
$a
Energy.
$3
876794
650
4
$a
Polymer melts.
$3
3683586
650
4
$a
Polyethylene glycol.
$3
3686750
650
4
$a
Microorganisms.
$3
666946
650
4
$a
Biology.
$3
522710
650
4
$a
Industrial engineering.
$3
526216
650
4
$a
Mechanics.
$3
525881
650
4
$a
Microbiology.
$3
536250
650
4
$a
Physics.
$3
516296
650
4
$a
Plastics.
$3
649803
650
4
$a
Polymer chemistry.
$3
3173488
650
4
$a
Sustainability.
$3
1029978
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0791
690
$a
0306
690
$a
0546
690
$a
0346
690
$a
0410
690
$a
0605
690
$a
0795
690
$a
0495
690
$a
0640
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Technische Universitaet Berlin (Germany).
$3
3480527
773
0
$t
Dissertations Abstracts International
$g
84-04A.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29417846
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9488067
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入