語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Development of Next Generation Photoelectrochemical and Polymer Transistor Devices.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Development of Next Generation Photoelectrochemical and Polymer Transistor Devices./
作者:
Ghamari, Pegah.
面頁冊數:
1 online resource (235 pages)
附註:
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Contained By:
Dissertations Abstracts International85-01B.
標題:
Polymers. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30549044click for full text (PQDT)
ISBN:
9798379866716
Development of Next Generation Photoelectrochemical and Polymer Transistor Devices.
Ghamari, Pegah.
Development of Next Generation Photoelectrochemical and Polymer Transistor Devices.
- 1 online resource (235 pages)
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Thesis (Ph.D.)--McGill University (Canada), 2022.
Includes bibliographical references
This research thesis focuses on two main studies involving micro/nano structural engineering of organic/inorganic semiconductor devices for development of next generation high performance and stable electronics. In the first project, we have explored the potential of GaN-based nanocrystals for the development of artificial photosynthesis devices for the conversion of CO2 to syngas, a mixture of CO and H2, and one of the promising future solar fuels. By integrating the Pt/TiO2 cocatalyst with the strong light harvesting of p-n Si junction and efficient electron extraction effect of GaN nanowires, we demonstrated an efficient and stable photoelectrochemical (PEC) reduction of CO2 into syngas product with controlled composition. It was found that the metal/oxide interface provides multifunctional catalytic sites that are inaccessible with the individual components, which structurally and electronically facilitate CO2 conversion into CO. As a result, a record solar-to-syngas (STS) efficiency of 0.87 % and a benchmark turnover number (TON) of 24800 are achieved. In addition, we developed a decoupling strategy involving Au-Pt dual cocatalysts to achieve high energy conversion efficiency with controlled syngas composition. By integrating spatially separated a CO-generating catalyst (Au) and an H2-generating catalyst (Pt) with GaN nanowires on planar Si photocathode, we achieved a record photon-to-current efficiency of 1.88 % and controllable syngas product with tunable CO/H2 ratio (0-10) under one-sun illumination. Our designed PEC system exhibited highly stable syngas production in the 10 h duration test.In the second project we investigated the improvement of organic field-effect transistors (OFETs) performance and stability using doping strategy. OFETs are emerging as promising building blocks for large-area printable and flexible electronics. However, they have yet to be implemented in practical applications due to operational challenges such as low mobility and device instability, both of which are linked to charge carrier trapping phenomena. Intentional molecular doping has been found to be an effective approach for mitigating trap states and enhancing the charge transport. However, unresolved issues such as unwanted off current and limited library of applicable molecular dopants have limited the effectiveness of the doping technique in addressing OFETs operational challenge. Here, we have introduced nitrofluorene (NF) acceptors as novel pdopants for polymer OFETs due to superior solubility, air stability, and ease of energy level tunability. The addition of NFs to a standard commercial diketopyrrolopyrrole-thienothiophene (DPP-DTT) polymer showed outstanding device performance, including an ∼5-fold enhancement in the saturation field-effect mobility (up to ∼8 cm2V−1 s −1), lowering threshold voltage, and one order of magnitude decrease in contact resistance. The NF-doping mechanism was investigated via spectroscopic, microscopic, and electrical characterization, which revealed the synergetic effect of filling deep traps and modified microstructure on significantly improved performance OFETs. In continue, we evaluated the environmental and operational stability of pristine and doped transistors. By exploring the impact of air exposure on pristine OFET performance, we found that suppression of electron-induced traps by oxygen doping, as well as diffusion of water molecules to semiconductor networks, lead to device environmental instability. We demonstrate that TeNF doping suppresses both effects, resulting in environmentally independent performance and good long-term stability of unencapsulated devices in ambient air (10% deterioration after 4 months storage). The doped OFETs also show significantly reduced bias stress effect and hysteresis. Such improvement of the environmental and operational stabilities is achieved by suppressing the majority-carrier traps (including electron-induced deep traps), and better microstructural order in TeNF doped polymer films.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379866716Subjects--Topical Terms:
535398
Polymers.
Index Terms--Genre/Form:
542853
Electronic books.
Development of Next Generation Photoelectrochemical and Polymer Transistor Devices.
LDR
:10151nmm a2200445K 4500
001
2363551
005
20231127093439.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798379866716
035
$a
(MiAaPQ)AAI30549044
035
$a
(MiAaPQ)McGill_1v53k337w
035
$a
AAI30549044
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Ghamari, Pegah.
$3
3704321
245
1 0
$a
Development of Next Generation Photoelectrochemical and Polymer Transistor Devices.
264
0
$c
2022
300
$a
1 online resource (235 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
500
$a
Advisor: Liboiron-Ladouceur, Odile;Perepichka, Dmytro.
502
$a
Thesis (Ph.D.)--McGill University (Canada), 2022.
504
$a
Includes bibliographical references
520
$a
This research thesis focuses on two main studies involving micro/nano structural engineering of organic/inorganic semiconductor devices for development of next generation high performance and stable electronics. In the first project, we have explored the potential of GaN-based nanocrystals for the development of artificial photosynthesis devices for the conversion of CO2 to syngas, a mixture of CO and H2, and one of the promising future solar fuels. By integrating the Pt/TiO2 cocatalyst with the strong light harvesting of p-n Si junction and efficient electron extraction effect of GaN nanowires, we demonstrated an efficient and stable photoelectrochemical (PEC) reduction of CO2 into syngas product with controlled composition. It was found that the metal/oxide interface provides multifunctional catalytic sites that are inaccessible with the individual components, which structurally and electronically facilitate CO2 conversion into CO. As a result, a record solar-to-syngas (STS) efficiency of 0.87 % and a benchmark turnover number (TON) of 24800 are achieved. In addition, we developed a decoupling strategy involving Au-Pt dual cocatalysts to achieve high energy conversion efficiency with controlled syngas composition. By integrating spatially separated a CO-generating catalyst (Au) and an H2-generating catalyst (Pt) with GaN nanowires on planar Si photocathode, we achieved a record photon-to-current efficiency of 1.88 % and controllable syngas product with tunable CO/H2 ratio (0-10) under one-sun illumination. Our designed PEC system exhibited highly stable syngas production in the 10 h duration test.In the second project we investigated the improvement of organic field-effect transistors (OFETs) performance and stability using doping strategy. OFETs are emerging as promising building blocks for large-area printable and flexible electronics. However, they have yet to be implemented in practical applications due to operational challenges such as low mobility and device instability, both of which are linked to charge carrier trapping phenomena. Intentional molecular doping has been found to be an effective approach for mitigating trap states and enhancing the charge transport. However, unresolved issues such as unwanted off current and limited library of applicable molecular dopants have limited the effectiveness of the doping technique in addressing OFETs operational challenge. Here, we have introduced nitrofluorene (NF) acceptors as novel pdopants for polymer OFETs due to superior solubility, air stability, and ease of energy level tunability. The addition of NFs to a standard commercial diketopyrrolopyrrole-thienothiophene (DPP-DTT) polymer showed outstanding device performance, including an ∼5-fold enhancement in the saturation field-effect mobility (up to ∼8 cm2V−1 s −1), lowering threshold voltage, and one order of magnitude decrease in contact resistance. The NF-doping mechanism was investigated via spectroscopic, microscopic, and electrical characterization, which revealed the synergetic effect of filling deep traps and modified microstructure on significantly improved performance OFETs. In continue, we evaluated the environmental and operational stability of pristine and doped transistors. By exploring the impact of air exposure on pristine OFET performance, we found that suppression of electron-induced traps by oxygen doping, as well as diffusion of water molecules to semiconductor networks, lead to device environmental instability. We demonstrate that TeNF doping suppresses both effects, resulting in environmentally independent performance and good long-term stability of unencapsulated devices in ambient air (10% deterioration after 4 months storage). The doped OFETs also show significantly reduced bias stress effect and hysteresis. Such improvement of the environmental and operational stabilities is achieved by suppressing the majority-carrier traps (including electron-induced deep traps), and better microstructural order in TeNF doped polymer films.
520
$a
Cette these de recherche se concentre sur deux etudes principales impliquant l'ingenierie structurale micro/nano de dispositifs semi-conducteurs organiques/inorganiques pour le developpement de l'electronique haute performance et stable de prochaine generation. Dans le premier projet, nous avons explore le potentiel des nanocristaux a base de GaN pour le developpement de dispositifs de photosynthese artificielle pour la conversion du CO2 en gaz de synthese, un melange de CO et H2, et l'un des futurs carburants solaires prometteurs. En integrant le cocatalyseur Pt/TiO2 avec la forte collecte de lumiere de la jonction p-n Si et l'effet d'extraction d'electrons efficace des nanofils de GaN, nous avons demontre une reduction photoelectrochimique (PEC) efficace et stable du CO2 en produit de gaz de synthese avec une composition controlee. Il a ete constate que l'interface metal/oxyde fournit des sites catalytiques multifonctionnels inaccessibles avec les composants individuels, qui facilitent structurellement et electroniquement la conversion du CO2 en CO. un chiffre d'affaires de reference (TON) de 24800 est atteint. De plus, nous avons developpe une strategie de decouplage impliquant des cocatalyseurs doubles Au-Pt pour atteindre une efficacite de conversion d'energie elevee avec une composition de gaz de synthese controlee. En integrant spatialement separes un catalyseur generateur de CO (Au) et un catalyseur generateur de H2 (Pt) avec des nanofils de GaN sur une photocathode plane en Si, nous avons atteint un rendement photon-courant record de 1,88 % et un produit de gaz de synthese controlable avec CO/accordable. Rapport H2 (0-10) sous un eclairage solaire. Notre systeme PEC concu a presente une production de gaz de synthese tres stable dans le test de duree de 10 h.Dans le deuxieme projet, nous avons etudie l'amelioration des performances et de la stabilite des transistors a effet de champ organique (OFET) en utilisant une strategie de dopage. Les OFET apparaissent comme des blocs de construction prometteurs pour l'electronique imprimable et flexible a grande surface. Cependant, ils doivent encore etre mis en oeuvre dans des applications pratiques en raison de defis operationnels tels que la faible mobilite et l'instabilite du dispositif, qui sont tous deux lies aux phenomenes de piegeage des porteurs de charge. Le dopage moleculaire intentionnel s'est avere etre une approche efficace pour attenuer les etats de piege et ameliorer le transport de charge. Cependant, des problemes non resolus tels qu'une bibliotheque hors tension indesirable et limitee de dopants moleculaires applicables a limite l'efficacite de la technique de dopage pour relever le defi operationnel des OFET. Ici, nous avons introduit des accepteurs de nitrofluorene (NF) en tant que nouveaux dopants p pour les OFET polymeres en raison de leur solubilite superieure, de leur stabilite a l'air et de leur facilite de reglage du niveau d'energie. L'ajout de NF a un polymere DPP-DTT commercial standard a montre des performances de dispositif exceptionnelles, y compris une amelioration de ∼5 fois de la mobilite a effet de champ de saturation (jusqu'a ∼8 cm2V −1 s −1), une tension de seuil abaissee et un ordre diminution de l'ampleur de la resistance de contact. Le mecanisme de dopage NF a ete etudie via une caracterisation spectroscopique, microscopique et electrique, qui a revele l'effet synergique du remplissage des pieges profonds et de la microstructure modifiee sur des OFET aux performances considerablement ameliorees. En continu, nous avons evalue la stabilite environnementale et operationnelle de transistors vierges et dopes. En explorant l'impact de l'exposition a l'air sur les performances parfaites de l'OFET, nous avons constate que la suppression des pieges induits par les electrons par dopage a l'oxygene, ainsi que la diffusion des molecules d'eau sur les reseaux de semi-conducteurs, entrainaient une instabilite environnementale de l'appareil. Nous demontrons que le dopage au TeNF supprime les deux effets, ce qui se traduit par des performances independantes de l'environnement et une bonne stabilite a long terme des dispositifs non encapsules dans l'air ambiant (deterioration de 10 % apres 4 mois de stockage). Les OFET dopes presentent egalement un effet de contrainte de polarisation et une hysteresis considerablement reduite. Une telle amelioration des stabilites environnementales et operationnelles est obtenue en supprimant les pieges a porteurs majoritaires (compris les pieges profonds induits par les electrons) et un meilleur ordre microstructural dans les films polymeres dopes au TeNF.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Polymers.
$3
535398
650
4
$a
Transmission electron microscopy.
$3
567074
650
4
$a
Mass spectrometry.
$3
551172
650
4
$a
Nanowires.
$3
576100
650
4
$a
Gases.
$3
559387
650
4
$a
Electrodes.
$3
629151
650
4
$a
Oxidation.
$3
714629
650
4
$a
Semiconductors.
$3
516162
650
4
$a
Nanoparticles.
$3
605747
650
4
$a
Emissions.
$3
3559499
650
4
$a
High temperature.
$3
3681917
650
4
$a
Carbon dioxide.
$3
587886
650
4
$a
Photovoltaic cells.
$3
604818
650
4
$a
Molecular beam epitaxy.
$3
601057
650
4
$a
Metal oxides.
$3
3681693
650
4
$a
Scientific imaging.
$3
3560377
650
4
$a
Energy.
$3
876794
650
4
$a
Indium.
$3
558247
650
4
$a
Synthesis gas.
$3
675389
650
4
$a
Transistors.
$3
713271
650
4
$a
Photocatalysis.
$3
737792
650
4
$a
Scanning electron microscopy.
$3
551366
650
4
$a
Alternative energy.
$3
3436775
650
4
$a
Chemical engineering.
$3
560457
650
4
$a
Condensed matter physics.
$3
3173567
650
4
$a
High temperature physics.
$3
3192580
650
4
$a
Nanotechnology.
$3
526235
650
4
$a
Physical chemistry.
$3
1981412
650
4
$a
Physics.
$3
516296
650
4
$a
Polymer chemistry.
$3
3173488
650
4
$a
Thermodynamics.
$3
517304
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0791
690
$a
0363
690
$a
0542
690
$a
0611
690
$a
0597
690
$a
0652
690
$a
0494
690
$a
0605
690
$a
0495
690
$a
0348
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Dissertations Abstracts International
$g
85-01B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30549044
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9485907
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入