語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Electron Emission Theories for Multiple Mechanisms and Device Configurations.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Electron Emission Theories for Multiple Mechanisms and Device Configurations./
作者:
Darr, Adam M.
面頁冊數:
1 online resource (186 pages)
附註:
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Contained By:
Dissertations Abstracts International85-01B.
標題:
Calculus. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30505976click for full text (PQDT)
ISBN:
9798379840259
Electron Emission Theories for Multiple Mechanisms and Device Configurations.
Darr, Adam M.
Electron Emission Theories for Multiple Mechanisms and Device Configurations.
- 1 online resource (186 pages)
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Thesis (Ph.D.)--Purdue University, 2022.
Includes bibliographical references
Electron emission plays a vital role in many modern technologies, from plasma medicine to heavy ion beams for fusion. An accurate theoretical model based upon the physics involved is critical to efficient operation of devices pushing the boundaries of complexity. The interactions between different electron emission mechanisms can severely alter device performance, especially when operating in extreme conditions. This dissertation studies electron emission from the perspectives of increasing geometric and physical mechanism complexitiesOne half of this dissertation derives new relations for space-charge limited emission (SCLE) in non-planar geometries. SCLE is the maximum stable current that may be produced by electron emission before the electric field of the electrons themselves self-limits further emission. In planar devices, this is modeled by the well-established Child-Langmuir (CL) equation. The Langmuir-Blodgett (LB) equations remain the most commonly accepted theory for SCLE for cylindrical and spherical geometries after nearly a century; however, they suffer from being approximations based on a polynomial series expansion fit to a nonlinear differential equation. I derive exact, fully analytic equations for these geometries by using variational calculus to transform the differential equation into a new form that is fully and exactly solvable. This variational approach may be extended to any geometry and offers a full description of the electric field, velocity, and charge density profiles in the diode.SCLE is also an important mechanism for characterizing the operation of devices with an external magnetic field orthogonal to the electric field. This "crossed-field" problem decreases the limiting current as electrons travel longer, curved paths, effectively storing some charge in the gap (moving parallel to the emitter). At a critical magnetic field called the Hull cutoff, electron paths become so tightly curved that the circuit can no longer be completed, a condition called magnetic insulation. Crossed-field SCLE has been accurately modeled in planar devices by Lau and Christenson. Using the variational approach, I replicate their planar results and extend the calculation to cylindrical geometry, a common choice for magnetron devices. Further, I derive additional equations with simplified assumptions that, for the first time, provide an analytic description of experimental results below the Hull cutoff field. Following this I incorporate a series resistor: device resistance (or impedance) changes non-linearly with current and voltage, so I couple Ohm's Law (OL) to all the models of crossed-field devices. For devices just below the Hull cutoff, I predict analytically and show in simulation novel bi-modal behavior, oscillating between magnetically insulated and non-insulated modes. With crossed-field device assessment, the variational calculus approach to space-charge may be used for numerous applications, including high power microwave sources, relativistic klystron devices, heavy ion beams, Hall thrusters, and plasma processing.The other half of this dissertation derives analytic theories to solve for emission current with three or more electron emission mechanisms simultaneously. In addition to the CL law, SCLE may also occur in neutral, non-vacuum diodes, modeled by the Mott-Gurney (MG) equation. These are the two limiting mechanisms I study; the other major modality of electron emission is direct electron production, the source of current in the device. Electrons are ejected when impelled by high temperature or electric field at the emission surface.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379840259Subjects--Topical Terms:
517463
Calculus.
Index Terms--Genre/Form:
542853
Electronic books.
Electron Emission Theories for Multiple Mechanisms and Device Configurations.
LDR
:04870nmm a2200349K 4500
001
2363537
005
20231127093434.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798379840259
035
$a
(MiAaPQ)AAI30505976
035
$a
(MiAaPQ)Purdue20359689
035
$a
AAI30505976
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Darr, Adam M.
$3
3704304
245
1 0
$a
Electron Emission Theories for Multiple Mechanisms and Device Configurations.
264
0
$c
2022
300
$a
1 online resource (186 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
500
$a
Advisor: Garner, Allen.
502
$a
Thesis (Ph.D.)--Purdue University, 2022.
504
$a
Includes bibliographical references
520
$a
Electron emission plays a vital role in many modern technologies, from plasma medicine to heavy ion beams for fusion. An accurate theoretical model based upon the physics involved is critical to efficient operation of devices pushing the boundaries of complexity. The interactions between different electron emission mechanisms can severely alter device performance, especially when operating in extreme conditions. This dissertation studies electron emission from the perspectives of increasing geometric and physical mechanism complexitiesOne half of this dissertation derives new relations for space-charge limited emission (SCLE) in non-planar geometries. SCLE is the maximum stable current that may be produced by electron emission before the electric field of the electrons themselves self-limits further emission. In planar devices, this is modeled by the well-established Child-Langmuir (CL) equation. The Langmuir-Blodgett (LB) equations remain the most commonly accepted theory for SCLE for cylindrical and spherical geometries after nearly a century; however, they suffer from being approximations based on a polynomial series expansion fit to a nonlinear differential equation. I derive exact, fully analytic equations for these geometries by using variational calculus to transform the differential equation into a new form that is fully and exactly solvable. This variational approach may be extended to any geometry and offers a full description of the electric field, velocity, and charge density profiles in the diode.SCLE is also an important mechanism for characterizing the operation of devices with an external magnetic field orthogonal to the electric field. This "crossed-field" problem decreases the limiting current as electrons travel longer, curved paths, effectively storing some charge in the gap (moving parallel to the emitter). At a critical magnetic field called the Hull cutoff, electron paths become so tightly curved that the circuit can no longer be completed, a condition called magnetic insulation. Crossed-field SCLE has been accurately modeled in planar devices by Lau and Christenson. Using the variational approach, I replicate their planar results and extend the calculation to cylindrical geometry, a common choice for magnetron devices. Further, I derive additional equations with simplified assumptions that, for the first time, provide an analytic description of experimental results below the Hull cutoff field. Following this I incorporate a series resistor: device resistance (or impedance) changes non-linearly with current and voltage, so I couple Ohm's Law (OL) to all the models of crossed-field devices. For devices just below the Hull cutoff, I predict analytically and show in simulation novel bi-modal behavior, oscillating between magnetically insulated and non-insulated modes. With crossed-field device assessment, the variational calculus approach to space-charge may be used for numerous applications, including high power microwave sources, relativistic klystron devices, heavy ion beams, Hall thrusters, and plasma processing.The other half of this dissertation derives analytic theories to solve for emission current with three or more electron emission mechanisms simultaneously. In addition to the CL law, SCLE may also occur in neutral, non-vacuum diodes, modeled by the Mott-Gurney (MG) equation. These are the two limiting mechanisms I study; the other major modality of electron emission is direct electron production, the source of current in the device. Electrons are ejected when impelled by high temperature or electric field at the emission surface.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Calculus.
$3
517463
650
4
$a
Diodes.
$3
673996
650
4
$a
Plasma.
$3
877619
650
4
$a
Physics.
$3
516296
650
4
$a
Power.
$3
518736
650
4
$a
Magnetic fields.
$3
660770
650
4
$a
Electric fields.
$3
880423
650
4
$a
Ion beams.
$3
3687997
650
4
$a
Geometry.
$3
517251
650
4
$a
Electromagnetics.
$3
3173223
650
4
$a
Mathematics.
$3
515831
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0605
690
$a
0607
690
$a
0405
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Purdue University.
$3
1017663
773
0
$t
Dissertations Abstracts International
$g
85-01B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30505976
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9485893
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入