語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Ecological Applications of Machine Learning to Digitized Natural History Data.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Ecological Applications of Machine Learning to Digitized Natural History Data./
作者:
Robillard, Alexander John.
面頁冊數:
1 online resource (122 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-04, Section: B.
Contained By:
Dissertations Abstracts International84-04B.
標題:
Ecology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29209645click for full text (PQDT)
ISBN:
9798351446325
Ecological Applications of Machine Learning to Digitized Natural History Data.
Robillard, Alexander John.
Ecological Applications of Machine Learning to Digitized Natural History Data.
- 1 online resource (122 pages)
Source: Dissertations Abstracts International, Volume: 84-04, Section: B.
Thesis (Ph.D.)--University of Maryland, College Park, 2022.
Includes bibliographical references
Natural history collections are a valuable resource for assessment of biodiversity and species decline. Over the past few decades, digitization of specimens has increased the accessibility and value of these collections. As such the number and size of these digitized data sets have outpaced the tools needed to evaluate them. To address this, researchers have turned to machine learning to automate data-driven decisions. Specifically, applications of deep learning to complex ecological problems is becoming more common. As such, this dissertation aims to contribute to this trend by addressing, in three distinct chapters, conservation, evolutionary and ecological questions using deep learning models. For example, in the first chapter we focus on current regulations prohibiting the sale and distribution of hawksbill sea turtle derived products, which continues internationally in physical and online marketplaces. To curb the sale of illegal tortoiseshell, application of new technologies like convolutional neural networks (CNNs) is needed. Therein we describe a curated data set (n = 4,428) which was used to develop a CNN application we are calling "SEE Shell", which can identify real and faux hawksbill derived products from image data. Developed on a MobileNetV2 using TensorFlow, SEE Shell was tested against a validation (n = 665) and test (n = 649) set where it achieved an accuracy between 82.6-92.2% correctness depending on the certainty threshold used. We expect SEE Shell will give potential buyers more agency in their purchasing decision, in addition to enabling retailers to rapidly filter their online marketplaces.In the second chapter we focus on recent research which utilized geometric morphometrics, associated genetic data, and Principal Component Analysis to successfully delineate Chelonia mydas (green sea turtle) morphotypes from carapace measurements. Therein we demonstrate a similar, yet more rapid approach to this analysis using computer vision models. We applied a U-Net to isolate carapace pixels of (n = 204) of juvenile C. mydas from multiple foraging grounds across the Eastern Pacific, Western Pacific, and Western Atlantic. These images were then sorted based on general alignment (shape) and coloration of the pixels within the image using a pre-trained computer vision model (MobileNetV2). The dimensions of these data were then reduced and projected using Universal Manifold Approximation and Projection. Associated vectors were then compared to simple genetic distance using a Mantel test. Data points were then labeled post-hoc for exploratory analysis. We found clear congruence between carapace morphology and genetic distance between haplotypes, suggesting that our image data have biological relevance. Our findings also suggest that carapace morphotype is associated with specific haplotypes within C. mydas. Our cluster analysis (k = 3) corroborates past research which suggests there are at least three morphotypes from across the Eastern Pacific, Western Pacific, and Western Atlantic.Finally, within the third chapter we discuss the sharp increase in agricultural and infrastructure development and the paucity of widespread data available to support conservation management decisions around the Amazon. To address these issues, we outline a more rapid and accurate tool for identifying fish fauna in the world's largest freshwater ecosystem, the Amazon. Current strategies for identification of freshwater fishes require high levels of training and taxonomic expertise for morphological identification or genetic testing for species recognition at a molecular level. To overcome these challenges, we built an image masking model (U-Net) and a CNN to mask and classify Amazonian fish in photographs. Fish used to generate training data were collected and photographed in tributaries in seasonally flooded forests of the upper Morona River valley in Loreto, Peru in 2018 and 2019. Species identifications in the training images (n = 3,068) were verified by expert ichthyologists. These images were supplemented with photographs taken of additional Amazonian fish specimens housed in the ichthyological collection of the Smithsonian's National Museum of Natural History. We generated a CNN model that identified 33 genera of fishes with a mean accuracy of 97.9%. Wider availability of accurate freshwater fish image recognition tools, such as the one described here, will enable fishermen, local communities, and citizen scientists to more effectively participate in collecting and sharing data from their territories to inform policy and management decisions that impact them directly.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798351446325Subjects--Topical Terms:
516476
Ecology.
Subjects--Index Terms:
Computer visionIndex Terms--Genre/Form:
542853
Electronic books.
Ecological Applications of Machine Learning to Digitized Natural History Data.
LDR
:06131nmm a2200445K 4500
001
2363310
005
20231121104604.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798351446325
035
$a
(MiAaPQ)AAI29209645
035
$a
AAI29209645
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Robillard, Alexander John.
$3
3704070
245
1 0
$a
Ecological Applications of Machine Learning to Digitized Natural History Data.
264
0
$c
2022
300
$a
1 online resource (122 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-04, Section: B.
500
$a
Advisor: Rowe, Christopher;Bailey, Helen.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2022.
504
$a
Includes bibliographical references
520
$a
Natural history collections are a valuable resource for assessment of biodiversity and species decline. Over the past few decades, digitization of specimens has increased the accessibility and value of these collections. As such the number and size of these digitized data sets have outpaced the tools needed to evaluate them. To address this, researchers have turned to machine learning to automate data-driven decisions. Specifically, applications of deep learning to complex ecological problems is becoming more common. As such, this dissertation aims to contribute to this trend by addressing, in three distinct chapters, conservation, evolutionary and ecological questions using deep learning models. For example, in the first chapter we focus on current regulations prohibiting the sale and distribution of hawksbill sea turtle derived products, which continues internationally in physical and online marketplaces. To curb the sale of illegal tortoiseshell, application of new technologies like convolutional neural networks (CNNs) is needed. Therein we describe a curated data set (n = 4,428) which was used to develop a CNN application we are calling "SEE Shell", which can identify real and faux hawksbill derived products from image data. Developed on a MobileNetV2 using TensorFlow, SEE Shell was tested against a validation (n = 665) and test (n = 649) set where it achieved an accuracy between 82.6-92.2% correctness depending on the certainty threshold used. We expect SEE Shell will give potential buyers more agency in their purchasing decision, in addition to enabling retailers to rapidly filter their online marketplaces.In the second chapter we focus on recent research which utilized geometric morphometrics, associated genetic data, and Principal Component Analysis to successfully delineate Chelonia mydas (green sea turtle) morphotypes from carapace measurements. Therein we demonstrate a similar, yet more rapid approach to this analysis using computer vision models. We applied a U-Net to isolate carapace pixels of (n = 204) of juvenile C. mydas from multiple foraging grounds across the Eastern Pacific, Western Pacific, and Western Atlantic. These images were then sorted based on general alignment (shape) and coloration of the pixels within the image using a pre-trained computer vision model (MobileNetV2). The dimensions of these data were then reduced and projected using Universal Manifold Approximation and Projection. Associated vectors were then compared to simple genetic distance using a Mantel test. Data points were then labeled post-hoc for exploratory analysis. We found clear congruence between carapace morphology and genetic distance between haplotypes, suggesting that our image data have biological relevance. Our findings also suggest that carapace morphotype is associated with specific haplotypes within C. mydas. Our cluster analysis (k = 3) corroborates past research which suggests there are at least three morphotypes from across the Eastern Pacific, Western Pacific, and Western Atlantic.Finally, within the third chapter we discuss the sharp increase in agricultural and infrastructure development and the paucity of widespread data available to support conservation management decisions around the Amazon. To address these issues, we outline a more rapid and accurate tool for identifying fish fauna in the world's largest freshwater ecosystem, the Amazon. Current strategies for identification of freshwater fishes require high levels of training and taxonomic expertise for morphological identification or genetic testing for species recognition at a molecular level. To overcome these challenges, we built an image masking model (U-Net) and a CNN to mask and classify Amazonian fish in photographs. Fish used to generate training data were collected and photographed in tributaries in seasonally flooded forests of the upper Morona River valley in Loreto, Peru in 2018 and 2019. Species identifications in the training images (n = 3,068) were verified by expert ichthyologists. These images were supplemented with photographs taken of additional Amazonian fish specimens housed in the ichthyological collection of the Smithsonian's National Museum of Natural History. We generated a CNN model that identified 33 genera of fishes with a mean accuracy of 97.9%. Wider availability of accurate freshwater fish image recognition tools, such as the one described here, will enable fishermen, local communities, and citizen scientists to more effectively participate in collecting and sharing data from their territories to inform policy and management decisions that impact them directly.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Ecology.
$3
516476
650
4
$a
Conservation biology.
$3
535736
650
4
$a
Computer science.
$3
523869
650
4
$a
Geographic information science.
$3
3432445
650
4
$a
Evolution & development.
$3
3172418
653
$a
Computer vision
653
$a
Conservation biology
653
$a
Data science
653
$a
Ecology
653
$a
Evolution
653
$a
Machine learning
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0329
690
$a
0408
690
$a
0984
690
$a
0412
690
$a
0800
690
$a
0370
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of Maryland, College Park.
$b
Marine-Estuarine-Environmental Sciences.
$3
1023615
773
0
$t
Dissertations Abstracts International
$g
84-04B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29209645
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9485666
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入