語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Explaining Transformers Using Class Activation Map.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Explaining Transformers Using Class Activation Map./
作者:
Pan, Deng.
面頁冊數:
1 online resource (40 pages)
附註:
Source: Masters Abstracts International, Volume: 83-12.
Contained By:
Masters Abstracts International83-12.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28971203click for full text (PQDT)
ISBN:
9798819362457
Explaining Transformers Using Class Activation Map.
Pan, Deng.
Explaining Transformers Using Class Activation Map.
- 1 online resource (40 pages)
Source: Masters Abstracts International, Volume: 83-12.
Thesis (M.S.)--Wayne State University, 2022.
Includes bibliographical references
Transformer based pretrained NLP models have became the primary choices in almost all NLP tasks because of their overall outstanding performance and robustness. However, it is still an open problem to understand a transformer based model's prediction due to the complexity of the stacked multi-head self-attention architectures. In this thesis, we utilize the idea behind class activation map (CAM) technique in explaining image classification tasks, and propose class activation transformer (CAT) for explaining the general transformer framework. We also analyze the technical soundness of our CAT and other gradient based Deep Neural Network explanation. Experiments demonstrate that CAT+transformer can be utilized as a general interpretation+prediction framework in both NLP and CV tasks.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798819362457Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Interpretable machine learningIndex Terms--Genre/Form:
542853
Electronic books.
Explaining Transformers Using Class Activation Map.
LDR
:02061nmm a2200373K 4500
001
2363273
005
20231121104552.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798819362457
035
$a
(MiAaPQ)AAI28971203
035
$a
AAI28971203
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Pan, Deng.
$0
(orcid)0000-0003-3037-8912
$3
3689978
245
1 0
$a
Explaining Transformers Using Class Activation Map.
264
0
$c
2022
300
$a
1 online resource (40 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 83-12.
500
$a
Advisor: Zhu, Dongxiao.
502
$a
Thesis (M.S.)--Wayne State University, 2022.
504
$a
Includes bibliographical references
520
$a
Transformer based pretrained NLP models have became the primary choices in almost all NLP tasks because of their overall outstanding performance and robustness. However, it is still an open problem to understand a transformer based model's prediction due to the complexity of the stacked multi-head self-attention architectures. In this thesis, we utilize the idea behind class activation map (CAM) technique in explaining image classification tasks, and propose class activation transformer (CAT) for explaining the general transformer framework. We also analyze the technical soundness of our CAT and other gradient based Deep Neural Network explanation. Experiments demonstrate that CAT+transformer can be utilized as a general interpretation+prediction framework in both NLP and CV tasks.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
523869
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Artificial intelligence.
$3
516317
653
$a
Interpretable machine learning
653
$a
Transformers
653
$a
Class activation map
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0984
690
$a
0464
690
$a
0800
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Wayne State University.
$b
Computer Science.
$3
1030863
773
0
$t
Masters Abstracts International
$g
83-12.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28971203
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9485629
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入