語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Predicting Music Genre Preferences Based on Online Comments.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Predicting Music Genre Preferences Based on Online Comments./
作者:
Sinclair, Andrew.
面頁冊數:
1 online resource (46 pages)
附註:
Source: Masters Abstracts International, Volume: 85-01.
Contained By:
Masters Abstracts International85-01.
標題:
Virtual communities. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30511596click for full text (PQDT)
ISBN:
9798379807702
Predicting Music Genre Preferences Based on Online Comments.
Sinclair, Andrew.
Predicting Music Genre Preferences Based on Online Comments.
- 1 online resource (46 pages)
Source: Masters Abstracts International, Volume: 85-01.
Thesis (M.Sc.)--California Polytechnic State University, 2014.
Includes bibliographical references
Communication Accommodation Theory (CAT) states that individuals adapt to each other's communicative behaviors. This adaptation is called "convergence." In this work we explore the convergence of writing styles of users of the online music distribution platform SoundCloud.com. In order to evaluate our system we created a corpus of over 38,000 comments retrieved from SoundCloud in April 2014. The corpus represents comments from 8 distinct musical genres: Classical, Electronic, Hip Hop, Jazz, Country, Metal, Folk, and World. Our corpus contains: short comments, frequent misspellings, little sentence structure, hashtags, emoticons, and URLs. We adapt techniques used by researchers analyzing other short web-text corpora in order to deal with these problems. We use a supervised machine learning approach to classify the genre of comments in our corpus. We examine the effects of different feature sets and supervised machine learning algorithms on classification accuracy. In total we ran 180 experiments in which we varied: number of genres, feature set composition, and machine learning algorithm. In experiments with all 8 genres we achieve up to 40% accuracy using either a Naive Bayes classifier or C4.5 based classifier with a feature set consisting of 1262 token unigrams and bigrams. This represents a 3 time improvement over chance levels.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379807702Subjects--Topical Terms:
3564377
Virtual communities.
Index Terms--Genre/Form:
542853
Electronic books.
Predicting Music Genre Preferences Based on Online Comments.
LDR
:02554nmm a2200337K 4500
001
2361394
005
20231019120613.5
006
m o d
007
cr mn ---uuuuu
008
241011s2014 xx obm 000 0 eng d
020
$a
9798379807702
035
$a
(MiAaPQ)AAI30511596
035
$a
(MiAaPQ)CalPoly2333
035
$a
AAI30511596
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Sinclair, Andrew.
$3
3430150
245
1 0
$a
Predicting Music Genre Preferences Based on Online Comments.
264
0
$c
2014
300
$a
1 online resource (46 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-01.
500
$a
Advisor: Khosmood, Foaad.
502
$a
Thesis (M.Sc.)--California Polytechnic State University, 2014.
504
$a
Includes bibliographical references
520
$a
Communication Accommodation Theory (CAT) states that individuals adapt to each other's communicative behaviors. This adaptation is called "convergence." In this work we explore the convergence of writing styles of users of the online music distribution platform SoundCloud.com. In order to evaluate our system we created a corpus of over 38,000 comments retrieved from SoundCloud in April 2014. The corpus represents comments from 8 distinct musical genres: Classical, Electronic, Hip Hop, Jazz, Country, Metal, Folk, and World. Our corpus contains: short comments, frequent misspellings, little sentence structure, hashtags, emoticons, and URLs. We adapt techniques used by researchers analyzing other short web-text corpora in order to deal with these problems. We use a supervised machine learning approach to classify the genre of comments in our corpus. We examine the effects of different feature sets and supervised machine learning algorithms on classification accuracy. In total we ran 180 experiments in which we varied: number of genres, feature set composition, and machine learning algorithm. In experiments with all 8 genres we achieve up to 40% accuracy using either a Naive Bayes classifier or C4.5 based classifier with a feature set consisting of 1262 token unigrams and bigrams. This represents a 3 time improvement over chance levels.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Virtual communities.
$3
3564377
650
4
$a
Tagging.
$3
3702066
650
4
$a
URLs.
$3
3681655
650
4
$a
Support vector machines.
$3
2058743
650
4
$a
Computer science.
$3
523869
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0800
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
California Polytechnic State University.
$3
3702065
773
0
$t
Masters Abstracts International
$g
85-01.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30511596
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9483750
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入