語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Propeller Design and Optimization Using a Robust Genetic Algorithm and a Computationally Efficient Solver.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Propeller Design and Optimization Using a Robust Genetic Algorithm and a Computationally Efficient Solver./
作者:
Pastor, Grady.
面頁冊數:
1 online resource (142 pages)
附註:
Source: Masters Abstracts International, Volume: 84-03.
Contained By:
Masters Abstracts International84-03.
標題:
Parents & parenting. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29288787click for full text (PQDT)
ISBN:
9798845454294
Propeller Design and Optimization Using a Robust Genetic Algorithm and a Computationally Efficient Solver.
Pastor, Grady.
Propeller Design and Optimization Using a Robust Genetic Algorithm and a Computationally Efficient Solver.
- 1 online resource (142 pages)
Source: Masters Abstracts International, Volume: 84-03.
Thesis (M.Sc.)--Auburn University, 2022.
Includes bibliographical references
A computationally efficient and reliable propeller design tool has been constructed using an advanced real coded Genetic Algorithm (GA) and a mid-fidelity potential flow solver. The GA constructs a population of propeller geometries using a series of Bernstein Polynomials (BP) which have a total of 63 coefficients. This population of propeller geometries is then tested using a reliable and efficient solver. The best four members from the population are then obtained by means of a tournament style selection followed by a round-robin style tournament to determine the true maximums. A following population is then built using the 63 characteristics from the four most optimal members. The process of build, test, select, and build is carried out for several demes or subpopulations which provide the initial population for the main generational loop. After all the deme and main generations have been executed, the GA will provide a propeller that matches the desired thrust input for the specified operating conditions and diameter while maintaining high propulsive efficiencies due to the nature of the fitness function. This thesis describes the technical details of the optimizer, solver, and associated tooling, validation cases for the solver, and sample optimization results.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798845454294Subjects--Topical Terms:
3562799
Parents & parenting.
Index Terms--Genre/Form:
542853
Electronic books.
Propeller Design and Optimization Using a Robust Genetic Algorithm and a Computationally Efficient Solver.
LDR
:02757nmm a2200457K 4500
001
2359542
005
20230917195740.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798845454294
035
$a
(MiAaPQ)AAI29288787
035
$a
(MiAaPQ)Auburn104158105
035
$a
AAI29288787
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Pastor, Grady.
$3
3700147
245
1 0
$a
Propeller Design and Optimization Using a Robust Genetic Algorithm and a Computationally Efficient Solver.
264
0
$c
2022
300
$a
1 online resource (142 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 84-03.
500
$a
Advisor: Hartfield, Roy; Chakraborty, Imon; Ahmed, Anwar.
502
$a
Thesis (M.Sc.)--Auburn University, 2022.
504
$a
Includes bibliographical references
520
$a
A computationally efficient and reliable propeller design tool has been constructed using an advanced real coded Genetic Algorithm (GA) and a mid-fidelity potential flow solver. The GA constructs a population of propeller geometries using a series of Bernstein Polynomials (BP) which have a total of 63 coefficients. This population of propeller geometries is then tested using a reliable and efficient solver. The best four members from the population are then obtained by means of a tournament style selection followed by a round-robin style tournament to determine the true maximums. A following population is then built using the 63 characteristics from the four most optimal members. The process of build, test, select, and build is carried out for several demes or subpopulations which provide the initial population for the main generational loop. After all the deme and main generations have been executed, the GA will provide a propeller that matches the desired thrust input for the specified operating conditions and diameter while maintaining high propulsive efficiencies due to the nature of the fitness function. This thesis describes the technical details of the optimizer, solver, and associated tooling, validation cases for the solver, and sample optimization results.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Parents & parenting.
$3
3562799
650
4
$a
Aircraft.
$3
832698
650
4
$a
Vortices.
$3
3681507
650
4
$a
Fluid dynamics.
$3
545210
650
4
$a
Optimization techniques.
$3
3681622
650
4
$a
Mutation.
$3
837917
650
4
$a
Genetic algorithms.
$3
533907
650
4
$a
Generations.
$3
586203
650
4
$a
Unmanned aerial vehicles.
$3
3560267
650
4
$a
Design.
$3
518875
650
4
$a
Children & youth.
$3
3541389
650
4
$a
Genes.
$3
600676
650
4
$a
Geometry.
$3
517251
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Computer science.
$3
523869
650
4
$a
Engineering.
$3
586835
650
4
$a
Fluid mechanics.
$3
528155
650
4
$a
Individual & family studies.
$3
2122770
650
4
$a
Mathematics.
$3
515831
650
4
$a
Mechanics.
$3
525881
650
4
$a
Physics.
$3
516296
650
4
$a
Robotics.
$3
519753
650
4
$a
Transportation.
$3
555912
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0389
690
$a
0538
690
$a
0800
690
$a
0984
690
$a
0537
690
$a
0204
690
$a
0628
690
$a
0405
690
$a
0346
690
$a
0605
690
$a
0771
690
$a
0709
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Auburn University.
$3
1020457
773
0
$t
Masters Abstracts International
$g
84-03.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29288787
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9481898
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入