語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Optimizing Environmental Monitoring with Machine Learning and UAS.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimizing Environmental Monitoring with Machine Learning and UAS./
作者:
Reckling, William Joseph.
面頁冊數:
1 online resource (111 pages)
附註:
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Contained By:
Dissertations Abstracts International85-01B.
標題:
Software. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30516475click for full text (PQDT)
ISBN:
9798379871406
Optimizing Environmental Monitoring with Machine Learning and UAS.
Reckling, William Joseph.
Optimizing Environmental Monitoring with Machine Learning and UAS.
- 1 online resource (111 pages)
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Thesis (Ph.D.)--North Carolina State University, 2023.
Includes bibliographical references
Unmanned aerial systems (UAS) are ideal tools for environmental monitoring due to their low cost, ease of use, and ability to collect high-quality data. Additionally, UAS can collect data from otherwise inaccessible places without endangering personnel or disturbing the study area. However, UAS are limited by battery, payload capacity, and regulations. Additionally, data collection can be sensitive to weather, and data processing can be time and resource intensive. Pairing drone-based data collection with a machine learning predictive model to narrow the search window can help focus environmental monitoring efforts. In this dissertation, I describe methods to target UAS data collection to identify rare plants, failing septic systems, and cyanobacterial harmful algal bloom (CyanoHAB) hotspots. In Chapter 2, I present an approach to create an optimal flight area to identify rare plants from a predictive model using the collected imagery to monitor plant health and distribution. In Chapter 3, a predictive model is used to create a priority queue to identify septic system malfunctions, which are then confirmed in UAS collected imagery. Lastly, in Chapter 4, I develop and test a novel technique to rapidly create an interpolated spectral index map highlighting CyanoHAB distribution for targeted UAS water sampling with a custom-made device. The research presented in this dissertation demonstrates data-driven approaches to planning targeted UAS flight areas for improving UAS data collection and analysis for environmental monitoring applications.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379871406Subjects--Topical Terms:
619355
Software.
Index Terms--Genre/Form:
542853
Electronic books.
Optimizing Environmental Monitoring with Machine Learning and UAS.
LDR
:02926nmm a2200409K 4500
001
2359452
005
20230917193953.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379871406
035
$a
(MiAaPQ)AAI30516475
035
$a
(MiAaPQ)NCState_Univ18402040894
035
$a
AAI30516475
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Reckling, William Joseph.
$3
3700055
245
1 0
$a
Optimizing Environmental Monitoring with Machine Learning and UAS.
264
0
$c
2023
300
$a
1 online resource (111 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
500
$a
Advisor: Mitasova, Helena.
502
$a
Thesis (Ph.D.)--North Carolina State University, 2023.
504
$a
Includes bibliographical references
520
$a
Unmanned aerial systems (UAS) are ideal tools for environmental monitoring due to their low cost, ease of use, and ability to collect high-quality data. Additionally, UAS can collect data from otherwise inaccessible places without endangering personnel or disturbing the study area. However, UAS are limited by battery, payload capacity, and regulations. Additionally, data collection can be sensitive to weather, and data processing can be time and resource intensive. Pairing drone-based data collection with a machine learning predictive model to narrow the search window can help focus environmental monitoring efforts. In this dissertation, I describe methods to target UAS data collection to identify rare plants, failing septic systems, and cyanobacterial harmful algal bloom (CyanoHAB) hotspots. In Chapter 2, I present an approach to create an optimal flight area to identify rare plants from a predictive model using the collected imagery to monitor plant health and distribution. In Chapter 3, a predictive model is used to create a priority queue to identify septic system malfunctions, which are then confirmed in UAS collected imagery. Lastly, in Chapter 4, I develop and test a novel technique to rapidly create an interpolated spectral index map highlighting CyanoHAB distribution for targeted UAS water sampling with a custom-made device. The research presented in this dissertation demonstrates data-driven approaches to planning targeted UAS flight areas for improving UAS data collection and analysis for environmental monitoring applications.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Software.
$2
gtt.
$3
619355
650
4
$a
Surface water.
$3
3685235
650
4
$a
Writing.
$3
551664
650
4
$a
Flowers & plants.
$3
3564028
650
4
$a
Biomass.
$3
1013462
650
4
$a
Aquatic ecosystems.
$3
3560371
650
4
$a
Visualization.
$3
586179
650
4
$a
Climate change.
$2
bicssc
$3
2079509
650
4
$a
Editing.
$3
601456
650
4
$a
Aircraft.
$3
832698
650
4
$a
Water quality.
$3
556913
650
4
$a
Vegetation.
$3
3560047
650
4
$a
Cameras.
$3
524039
650
4
$a
Algae.
$3
546231
650
4
$a
Planning.
$3
552734
650
4
$a
Satellites.
$3
924316
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Aquatic sciences.
$3
3174300
650
4
$a
Botany.
$3
516217
650
4
$a
Ecology.
$3
516476
650
4
$a
Hydrologic sciences.
$3
3168407
650
4
$a
Microbiology.
$3
536250
650
4
$a
Water resources management.
$3
794747
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0404
690
$a
0538
690
$a
0792
690
$a
0309
690
$a
0329
690
$a
0388
690
$a
0410
690
$a
0595
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
North Carolina State University.
$3
1018772
773
0
$t
Dissertations Abstracts International
$g
85-01B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30516475
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9481808
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入