語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Rare-Event Estimation and Calibration for Large-Scale Stochastic Simulation Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Rare-Event Estimation and Calibration for Large-Scale Stochastic Simulation Models./
作者:
Bai, Yuanlu.
面頁冊數:
1 online resource (306 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-10, Section: B.
Contained By:
Dissertations Abstracts International84-10B.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30319143click for full text (PQDT)
ISBN:
9798379418182
Rare-Event Estimation and Calibration for Large-Scale Stochastic Simulation Models.
Bai, Yuanlu.
Rare-Event Estimation and Calibration for Large-Scale Stochastic Simulation Models.
- 1 online resource (306 pages)
Source: Dissertations Abstracts International, Volume: 84-10, Section: B.
Thesis (Ph.D.)--Columbia University, 2023.
Includes bibliographical references
Stochastic simulation has been widely applied in many domains. More recently, however, the rapid surge of sophisticated problems such as safety evaluation of intelligent systems has posed various challenges to conventional statistical methods. Motivated by these challenges, in this thesis, we develop novel methodologies with theoretical guarantees and numerical applications to tackle them from different perspectives. In particular, our works can be categorized into two areas: (1) rare-event estimation (Chapters 2 to 5) where we develop approaches to estimating the probabilities of rare events via simulation; (2) model calibration (Chapters 6 and 7) where we aim at calibrating the simulation model so that it is close to reality. In Chapter 2, we study rare-event simulation for a class of problems where the target hitting sets of interest are defined via modern machine learning tools such as neural networks and random forests. We investigate an importance sampling scheme that integrates the dominating point machinery in large deviations and sequential mixed integer programming to locate the underlying dominating points. We provide efficiency guarantees and numerical demonstration of our approach. In Chapter 3, we propose a new efficiency criterion for importance sampling, which we call probabilistic efficiency. Conventionally, an estimator is regarded as efficient if its relative error is sufficiently controlled. It is widely known that when a rare-event set contains multiple "important regions" encoded by the dominating points, importance sampling needs to account for all of them via mixing to achieve efficiency. We argue that the traditional analysis recipe could suffer from intrinsic looseness by using relative error as an efficiency criterion. Thus, we propose the new efficiency notion to tighten this gap. In particular, we show that under the standard Gartner-Ellis large deviations regime, an importance sampling that uses only the most significant dominating points is sufficient to attain this efficiency notion. In Chapter 4, we consider the estimation of rare-event probabilities using sample proportions output by crude Monte Carlo. Due to the recent surge of sophisticated rare-event problems, efficiency-guaranteed variance reduction may face implementation challenges, which motivate one to look at naive estimators. In this chapter we construct confidence intervals for the target probability using this naive estimator from various techniques, and then analyze their validity as well as tightness respectively quantified by the coverage probability and relative half-width. In Chapter 5, we propose the use of extreme value analysis, in particular the peak-over-threshold method which is popularly employed for extremal estimation of real datasets, in the simulation setting. More specifically, we view crude Monte Carlo samples as data to fit on a generalized Pareto distribution. We test this idea on several numerical examples. The results show that in the absence of efficient variance reduction schemes, it appears to offer potential benefits to enhance crude Monte Carlo estimates. In Chapter 6, we investigate a framework to develop calibration schemes in parametric settings, which satisfies rigorous frequentist statistical guarantees via a basic notion that we call eligibility set designed to bypass non-identifiability via a set-based estimation. We investigate a feature extraction-then-aggregation approach to construct these sets that target at multivariate outputs. We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator. In Chapter 7, we study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge, a model calibration problem under both aleatory and epistemic uncertainties. Our methodology is based on an integration of distributionally robust optimization and importance sampling. The main computation machinery in this integrated methodology amounts to solving sampled linear programs. We present theoretical statistical guarantees of our approach via connections to nonparametric hypothesis testing, and numerical performances including parameter calibration and downstream decision and risk evaluation tasks.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379418182Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Model calibrationIndex Terms--Genre/Form:
542853
Electronic books.
Rare-Event Estimation and Calibration for Large-Scale Stochastic Simulation Models.
LDR
:05740nmm a2200421K 4500
001
2358940
005
20230830051526.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379418182
035
$a
(MiAaPQ)AAI30319143
035
$a
AAI30319143
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Bai, Yuanlu.
$3
3699491
245
1 0
$a
Rare-Event Estimation and Calibration for Large-Scale Stochastic Simulation Models.
264
0
$c
2023
300
$a
1 online resource (306 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-10, Section: B.
500
$a
Advisor: Lam, Henry.
502
$a
Thesis (Ph.D.)--Columbia University, 2023.
504
$a
Includes bibliographical references
520
$a
Stochastic simulation has been widely applied in many domains. More recently, however, the rapid surge of sophisticated problems such as safety evaluation of intelligent systems has posed various challenges to conventional statistical methods. Motivated by these challenges, in this thesis, we develop novel methodologies with theoretical guarantees and numerical applications to tackle them from different perspectives. In particular, our works can be categorized into two areas: (1) rare-event estimation (Chapters 2 to 5) where we develop approaches to estimating the probabilities of rare events via simulation; (2) model calibration (Chapters 6 and 7) where we aim at calibrating the simulation model so that it is close to reality. In Chapter 2, we study rare-event simulation for a class of problems where the target hitting sets of interest are defined via modern machine learning tools such as neural networks and random forests. We investigate an importance sampling scheme that integrates the dominating point machinery in large deviations and sequential mixed integer programming to locate the underlying dominating points. We provide efficiency guarantees and numerical demonstration of our approach. In Chapter 3, we propose a new efficiency criterion for importance sampling, which we call probabilistic efficiency. Conventionally, an estimator is regarded as efficient if its relative error is sufficiently controlled. It is widely known that when a rare-event set contains multiple "important regions" encoded by the dominating points, importance sampling needs to account for all of them via mixing to achieve efficiency. We argue that the traditional analysis recipe could suffer from intrinsic looseness by using relative error as an efficiency criterion. Thus, we propose the new efficiency notion to tighten this gap. In particular, we show that under the standard Gartner-Ellis large deviations regime, an importance sampling that uses only the most significant dominating points is sufficient to attain this efficiency notion. In Chapter 4, we consider the estimation of rare-event probabilities using sample proportions output by crude Monte Carlo. Due to the recent surge of sophisticated rare-event problems, efficiency-guaranteed variance reduction may face implementation challenges, which motivate one to look at naive estimators. In this chapter we construct confidence intervals for the target probability using this naive estimator from various techniques, and then analyze their validity as well as tightness respectively quantified by the coverage probability and relative half-width. In Chapter 5, we propose the use of extreme value analysis, in particular the peak-over-threshold method which is popularly employed for extremal estimation of real datasets, in the simulation setting. More specifically, we view crude Monte Carlo samples as data to fit on a generalized Pareto distribution. We test this idea on several numerical examples. The results show that in the absence of efficient variance reduction schemes, it appears to offer potential benefits to enhance crude Monte Carlo estimates. In Chapter 6, we investigate a framework to develop calibration schemes in parametric settings, which satisfies rigorous frequentist statistical guarantees via a basic notion that we call eligibility set designed to bypass non-identifiability via a set-based estimation. We investigate a feature extraction-then-aggregation approach to construct these sets that target at multivariate outputs. We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator. In Chapter 7, we study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge, a model calibration problem under both aleatory and epistemic uncertainties. Our methodology is based on an integration of distributionally robust optimization and importance sampling. The main computation machinery in this integrated methodology amounts to solving sampled linear programs. We present theoretical statistical guarantees of our approach via connections to nonparametric hypothesis testing, and numerical performances including parameter calibration and downstream decision and risk evaluation tasks.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
523869
650
4
$a
Systems science.
$3
3168411
653
$a
Model calibration
653
$a
Intelligent systems
653
$a
Rare-event estimation
653
$a
Stochastic simulation
653
$a
Monte Carlo estimates
653
$a
Machine learning tools
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0796
690
$a
0984
690
$a
0800
690
$a
0790
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Columbia University.
$b
Operations Research.
$3
2096452
773
0
$t
Dissertations Abstracts International
$g
84-10B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30319143
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9481296
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入